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ABSTRACT

This paper has two aims. First, in an expository style an index theory

for flows is presented, which extends the classical Morse-theory for gradient

flows on manifolds. Secondly this theory is applied in the study of the

forced oscillation problem of time dependent (periodic in time) and asymptot-

ically linear Hamiltonian equations. Using the classical variational principle

for periodic solutions of Hamiltonian systems a Morse-theory for periodic

solutions of such systems is established. In particular a winding number,

similar to the Maslov index of a periodic solution is introduced, which is

related to the Morse-index of the corresponding critical point. This added

structure is useful in the interpretation of the periodic solutions found.
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777
SIGNIFICANCE AND EXPLANATION

The basic laws of Physics are governed by action principles. Equilibrium

states are critical points of an 'action functional.' In most cases (in

particular that of this report) these functionals are "infinitely indefinite"

and classical Morse theory does not apply. In this report a modified theory

is described and is applied to find periodic solutions of Hamiltonian systems

of equations. In particular a theorem is proved which is analogous to Morse's

theorem relating the index of a closed geodesic (as a critical point of an

Energy functional) to the number of conjugate points on the geodesic.

The report is one of many steps in the development of a "Morse Theory"

for infinitely indefinite functionals.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

........... o ,- . . .................................. •...-.



MORSE TYPE INDEX THEORY FOR FLOWS AND PERIODIC SOLUTIONS
FOR HAMILTONIAN EQUATIONS

Charles Conley and Eduard Zehnder

Introduction

Let h - h(t,x) e C2(R x R2n), n > 2. We consider the time de-

pendent Hamiltonian vectorfield

(1) -Jh'(t,x), (t,x) e R x R 2n

where J is the standard symplectic structure in R2n, and where h'

denotes the gradient of h with respect to x. Assuming the Hamiltonian

function h to depend periodically on time:

h(t+T,x) = h(t,x)

for some T >.o, we are looking for periodic solutions of (1) having

period T, x(t) - x(t+T). Such solutions correspond in a one-to-one

way to the critical points of the following functional f defined on

the loop space which is simply the space of periodic functions having

period T:

Ti

(2) f(x) : "f < x,Jx>- h(t,x(t)) } dt.
0

Sponsored by the United States Amy under Contract No. DAAG29-80-C-0041.
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In fact, the equation (1) is the Euler equation of the variational

problem: extr f(x), and in order to have periodic solutions one has to

impose periodic boundary conditions: x(o) = x(T). The first variation

of f is then given by

T
sf(x)y - f < - Jx - h'(t,x), y > dt.

0

In the following this variational approach will be used in order

to find periodic solutions. We observe that the functional f is neither

bounded from below nor from above. (If h is convex a different func-

tional could be used which is bounded from below, however we do not make

such a requirement.) It turns out, that the critical points of f are

saddle points having infinite dimensional stable and unstable invariant

manifolds. In fact for the second variation of f at a critical point

Xo we find the expression:

82 T ~ tf(xo)(Yl'Y 2 ) = I < -Jyl - h"(ttxo)Yl'Y 2 > dt.
0

The selfadjoint operator of this bilinear form (defined on the dense

subspace {x 6 H1(o,T; R2n ) I x(o) = x(T)} of L2) can be'seen to have a

purely discrete spectrum which is unbounded from below and from above

(see section 2). In order to set up a Morse theory for periodic solutions

we need a relation between the particular periodic solution of (1) and

its corresponding critical point of (2). For this purpose we introduce

for a periodic solution of (1) an index, which will turn out to be

-2-
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roughly the signature of the Hessian of f at the corresponding critical

point. To do so we pick any periodic solution xo(t) - X0(t T) of (1)

and look at the linearized equation along this solution, i.e. at the

linear equation

(3) y - Jh(t,xo(t))y

Setting A(t): h"(t,xo(t)) we can rewrite this equation as

(4) y - JA(t)y

where A(t) is symmetric,' t - A(t) continuous, and Aft+T) A(t),

i.e. is periodic of period T 0 0. If now X(t) is the fundamental

solution of (4) which satisfies X(t) - JA(t) X(t) and X(o) a 1, then

X(t), o < t < T is an arc in the group of symplectic matrices

starting at the identity. The etgenvalues of the symplectic matrix X(T)

are called the Floquet multipliers associated to the periodic solution

xo(t). We shall single out as nondegenerate periodic solutions those

which do not have 1 as Floquet multiplier and hence define:

Definition: A periodic solution xo(t) of (1) is called nondegenerate,

if it has no Floquet multiplier equal to 1.

This definition requires that the linear system (4), with

periodic coefficients, admits no nontrivial periodic solutions with

period T, as is -ell known from Floquet theory.

-3-
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We now consider the set of continuous loops of symmetric ma-

trices, A(t) = A(t+T). which have the additional property that the

corresponding equation (4) has no Floquet multiplier equal to 1. We

call this set P. In P an equivalence relation is introduced as

follows: two loops Ao(t) and A1(t) are called equivalent, if one

1loop can continuously be deformed into the other one without leaving

the'set P of loops under consideration. In other words, there exists

a continuous family Aa(t), o < a < I of loops, such that Aa(t) = Ao(t)

for a - o and A a(t) = A1(t) for a = 1, and such that 1 is not an

eigenvalue of X,(T) for all o < a < 1, where Xa(t) is the fundamen-

tal solution satisfying Xa(t) = JAa(t).Xa(t) and Xa(o) = 1. It turns

out that the set P decomposes into countably many equivalence classes,

which are characterized by an integer, which will first be defined for

a special constant loop.

Let A(t) - S be a constant loop in P, the corresponding fun-

damental solution is then exp(tJS), and 1 is not a Floquet multiplier

if exp(TJS) has no eigenvalue equal to 1. For an eigenvalue X of JS

we therefore have A TZ, where T -L2 . We now consider the purely
T

imaginary eigenvalues of JS, and assume them to be distinct from each

other. They occur in pairs. If (x,3-) is a pair of purely imaginary

eigenvalues with corresponding complex eigenvectors e,e, then

" W, Je > A o is purely imaginary, and we set a(x): = Sign(- i

" i. Je >) Im X. Observe that a(X) - a(T) = a(-x). Since, by assump-

tion, a(X) 1 xZ, there is an integer m such that MT < 3(X) < (m+1)T.

1In this case we set ([(x)] = m + . and define

(5) j(s) a r ) z,

° :,.o-°:.. , -. . -,. .. . . *.. . .. ,.. " . .-
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where in the above sumation x runs over all purely imaginary eigen-

values of JS. If there are no such eigenvalues the sum is understood

to be zero. Observe that j(S) is an integer, since there are an even

number of purely imaginary eigenvalues. As index of this special

constant loop A(t) = S in P we set

(6) ind(A(t)) = j(S).

With this notation we can formulate:

Theomem I

Eachk equ.Zvatene eW4a o6 the set P o6 toop6 containsl cons~tant toop.6

A(t) a S 6o,% wkeh ind(A(t)) is de ied as above. W such cont.tanLt

L.oop in the same equwvatence etaAu6 have the same index, and contant

t .oop n d4.~etent component-S o6 P have diZeAent ndce. To evetq

integeA j c- Z thei4t is exactty onie equivatence c&16a havi.ng the index

J.
In view of this theorem it is only necessary to define the index

for the special class of constant loops chosen above. The theorem states

that the index is well defined on components.

By means of theorem 1 we shall associate to every nondegenerate

periodic solution xo(t) of the equation (1) the index j of the

corresponding linearized equation (3). After these explanations we can

formulate an existence statement for periodic solutions of an asympto-

tically linear Hamiltonian system.

-5-
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Theouem 2.

Let h - h(t,x) 6E C (R x R2 ), n > 2, be pe'r.odic in time o' pe~iod

T >a, h(t+T,x) *h(t,x). A6awnme (1) the He6&i.n ad h i6 bounded:

-0 <h*(t,x) B o4% att (t,x) c- R x R2n and So& .6ome coarLtant

0 >a. A6.ume (ii) the HamitLton.&zn veectotdietd to be a.y~mptotca~e

Jh'(t,x) a JA,,(t)x + o(Jxl), as lxI -

udo~~mty in~ t, wke'~e A.(t) - A0(t+T) i6 a cotnuoua Zoop o6

aynnetLZc matugieA. A-6.ume (Mi) that the t'iviat .6otution ad the

I equation xa-JA(t)x i4 nondegenate and denote it6 index by jc.

Thxx the 6ottowng 6atement6 hotd:

(1) Thte~e exiata a pewiode botution o6 peti.od T So,% (1). 14

thi6 pe'ziwd2' Aotution is nondegene'uate wt index JO, then theAe i6

a,6econd T-pe..odi.e 6otution, ptovided J 0 A j. Motecve~t 16d t-heAe -te

&vw nondegenewa-te pe~~iod.Ze soLLttiow thete i4 aZso a thid peti.odic

Aotuton.

(2) Aaaume atL the pe7tiodic .3otutioY&6 ae nondegene-ate, fthen

thelte a.~e only 5ZniteLy manyj oj them uzd theit awnbe% i.6 odd. ISi

A 1 < k < m, denote theLt. bndcc4s we have the 3'o Lcw-Lg idenIty:

m t 3k tIa + td (1t) dt

-6-
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Laheie d > o i,6 an integet, and whcte Qd(t) Zs a poltyotnZ having

nonegatve £ntege4t "oe" ZL"ts.

The theorem extends earlier results in [31 and [141 . We point

out an interesting special case of the above statement, which can be

viewed as a generalization to higher dimensions of the Poincar&-Birk-

hoff fixed point theorem for mappings in the plane. This well known

theorem states that a measure preserving homeomorphism of an annulus,

which twists the two boundaries in opposite directions has at least two

fixed points, see G.D. Birkhoff [5] and, more recently, M. Brown and

W.D. Neumann [6].

CoptottauJ.

Let h - h(t,x) 6 C2 (R x R2n), n > 2 be pe4.odic., h(t+T),x) = h(t,x)

and tet the He64..an o6 h to be bounded. A6.ume

Jh'(t,x) - JA(t)x + o(IxI) as Ixi -

Jh'(t,x) a JAo(t)x + o(Ix!) as jxj -, o

uwi6o~mMt in t, 'or% too continuouA Zoop 6 Ao(t+T) = Ao(t) and

A(t+T) = A(t). A4ume that .the too &neaA 4-Otem x = JA.(t)x and

x - JA0(t)x do not a6dmv any nontiviat4 T-pe-cdcC 6oZutons, and de-

note by j. and Jo the incice4 oj theze t oo Une sy.6tew6. I'

J. # Jo tJten the e ex zts a nont.tviaZ T-petiodc sc&Uoon oj (1).

Mo4%ove4, .i .' h.Z petodi. .cZwut.ont is aZo nondct .neac"a.t ,'c; Chet

iA a .eccnd T-petodic toeion.

-7-
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In other words, if the two linear systems with A0(t) and

--A(t) cannot be continuously deformed into each other within the set

P, then we conclude the existence of a T-periodic orbit. The corollary

only claims the existence of one T-periodic solution except if the non-
0

degeneracy condition is satisfied. This is in contrast to the Poincarb-

Birkhoff fixed point theorem which always guarantees two fixed points.

.8 Birkhoff's original proof in [5] also suggests, that the integer

j1J0-1 4 is a measure for the lower bound of the number of periodic

solutions of (1). Our proof of the above statement being based on a

Morse-type index theory does not allow such a conclusion. However, our

statements given here may allow improvements similar to those allowed

by using Ljusternik's category theory, when it is added to the classical

Morse theory. As a sideremark ve recall, however, that under additional

assumptions the following result has been proved by means of mini-max

techniques:

Theotem [31

Let h be a i.n the cojctaAy and a,oue, in addition, h(t,x) = h(t,-x)

jlt aU (t,x) 6 R x R~n. 0oeove, &t Ao(t) = Ao  and A=(t) = A. be

independent o t. Then (1) haz at tet ijo-j. nonttivie0. pau (x(t),

-x(t)) od T-peAiodia 4otation6.

As for the proof of theorem 2. we are looking for critical

points of the functional f defined on the loop space. The assumption

(i) allows the application of an analytical device due to H. Amann [1],

-8-



which in this context was already used in (21 and which reduces the

study of critical points of f to the study of critical points of a

related functional, a, defined on a finite dimensional space Z, namely

the trigonometrical polynomials of a fixed finite order. There exists

an injective map u from Z into the whole loop space such that the

critical points of the functional a(z) = f(u(z)) correspond in a one

to one way to the critical points u = u(z) of f in the loop space.

To the gradient flow z =a'(z) we then apply a Morse-type index theory

for flows, which is represented in section 3.

In order to briefly outline this index theory for flows we con-

sider a flow on a topological space which is not necessarily a gradient

flow on a manifold. To an isolated invariant set S an index pair

(N1,No) can be associated, where N0 C N1 is roughly the "exit set"

of NJ, and where S C int(N I \ NO), see section 3. The homotopy type

of the pointed space N /No  then does not depend on the particular

choice of index pairs for S and is called the index of S, and de-

noted by h(S): - [N1/No). We therefore can associate to an isolated

invariant set S the algebraic invariant p(t,h(S)), which is the series

in t whose coefficients are the ranks of Cech cohormn-ogy of an index-

pair (NI,N0 ) for S. The index theory for flows then relates the al-

gebraic invarlants of S to the algebraic invariants of a lorse de-

composition of S. The result is as follows (for a precise formulation

of the statement we refer to section 3)

--

4t . -* - .
•  

° 4 , *. - * . . - . - . . . - . -. . -.-' 4 -:::T: T'T. - :T ' I : .:-:': :. " -- - - " ' " "" -.



Theo/em 3

Let S be an isoLa.ted invat'ant 4et, and Ut (M1 .. J .m) be an orde~'rd

Mo",6e decomp.v5.U.ton oJ S. whete Mk C S .ne ._ o.t.Cdand itnvatb.;tt.

Then thetrc Z5 a JLZta tion N0 c N1 c C N m  jot tJLi25 Motre decom-

po £tion, 6uch that (NmNo) Zs an index padtZ. ji', S and .uch that

(N.,Nj.i ) L a ndex paL. o N.. I ,e et h(tM ) = (N./N. I and
_1 3- an ine 3o~ otM 1 e ~ 1 j-1

-,h(S) = [Nm/No ] , then -the JoItocuing identity hoids:

m
1: p(t~h(Mj)) = p(t,h(S)) + (1+t) Q(t)J=J

wh~e Q(t) 16 a AeA in t having onte eonnegaive -ntege

coed66cent . ThiA identity can be viewed a6 a genemazation od the

.1 Mo44e inequaLtZeA.

The development outlined here extends some of the results in

(41. It can be viewed as a generalization of Morse theory for flows

other than gradient flows on spaces other than manifolds. An index is

associated not only to critical points but to any isolated invariant

set of a local flow. In addition to the classical Morse theory it in-

cludes Simle's generalization for periodic orbits [8]. More cogently,

an analogue of the "Homotopy Axiom" of Leray-Schauder degree theory is

possible in this generalized Morse theory. In this connection we observe

that even in applications to gradient flows it is necessary to have an

index for sets other than critical points in order to have this ana-

logue, since a critical point may under deformation of the flow be con-

tinued to a set which does not consist just of critical points. With

this addition, the generalized Morse theory becomes a useful tool in

bifurcation theory.

-10-
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The application of this index theory to the problem of periodic

solutions is as follows. We first observe that due to the assumption

(ii) and (iii) in theorem 2 the set S of j,;nded solutions of the

gradient flow a' is compact, hence has an index. Using the invariance

of the index under deformations crucially, this index is computed to be

the homotopy type of a pointed sphere:

h(S) ], m dim Z- J.,

m A.

hence p(t,h(S)) - t . Here S denotes a sphere of dimension m

with a distinguishes point, * , that is a pair (S , ,). The critical

points of the functional a for which we are looking comprise a Morse

decomposition of the isolated invariant set. It turns out that if a periodir

solution is nondegenerate with index j, then the corresponding critical point,

z E Z, of a is an isolated invariant set with index

h( (z} ) a [5m] , m " dim Z - j,

hence p(t,h( zi )) u tm. The statements in theorem 2 are then an imme-

diate consequence of theorem 3.

The statement of the above Corollary generalizes a corresponding

result of H. Amann and E. Zehnder [3J improved by Kung-Ching Chang [141,

where the linear systems "at o" and "at -" are assumed to be independent

of time. It should be said that there are many recent existence results

of periodic solutions of timedependent Ham4ltonian systems, which how-

ever postulate strong asymptotic nonlinearities of the Hamiltonian vector-

field. For example, assuming a superquadratic behaviour of the Hamiltonian

-11-
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function at -, and an elliptic timeindependent equilibrium point at o,

P. Rabinowitz (151 finds not only a T-periodic solution, but also sub-

harmonic solutions, i.e. solutions of period kT, k 6 N. In such a si-

tuation it is not obvious how to isolate a suitable set of bounded so-

lutions of the gradient system, to which the above outlined index-theory

can be applied. The proof of Rabinowitz follows different lines and is

based on mini-max arguments. We point out that the number of T-periodic

solutions for such highly nonlinear systems is expected to be large. In

the special case of dimension n = 1 this is in fact known, see H. Jacobowitz

1251 and P. Hartmann [26 ], special results in higher dimensions are due

to A. Bahri and H. Berestickl [241

The organization of the paper is as follows. In the first section

we describe the index for periodic solutions of timedependent Hamiltonian

systems. In the second section theorem 2 will be proved. In section 3 the

index theory for flows is represented. It makes use of the concepts and

tools developed in (41, however for the readers convenience it will be

developed from the beginning. We point out that the setting in which

this theory is developed is more general than might the first be noticed.

For example, it readily adapts to diffusion reaction equations, to func-

tional delay equations and (as will be seen in a later paper) to the

treatment of indefinite functionals in infinite dimensions, for which

it is not immedlately clear there even is a flow. To bring this out some

otherwise irrelevant propositions are added. The organization of the

paper is seen from the following table of contents.

-12-
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1. Arcs in Sp(n,R), n z 2

The aim of this section is to prove theorem 1 in the introduction. With

J e X(R 2 n ) we denote the standard symplectic structure in R2n

0 . 0 -1o

13 0

where I is the identity matrix in Rn. We recall, that the group of

symplectic matrices in R2n is defined as Sp(n,R) - (M e 4(R2n)

NTJN - J), and we abbreviate in the following W - Sp(n,R). With

W* C W we denote the subset W* a (K 6 W I is not an eigenvalue of

M). Now consider the linear differential equation

(1.1) x * JA(t)x

in R2n, where A(t+l) a A(t) is continuous and periodic with period 1.

If X(t) is the fundamental solution:

(1.2) X(t) -JA(t) X(t), X(o) 1 ,

then X(t), o <_ t < 1 is an arc in W. We consider loops A(t) with the

property that X(1) 6 W*. There is a one to one correspondence between the

-14-
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set of such equations and the set of continuously differentiable curves

X(t), a < t < 1, in W satisfying

X(o) • 1, X(1) 6 W(1.3)
X'(1) X'(o) X(1)

the correspondence being given by JA(t) - X'(t) X(t) 1. In order to

prove theorem 1 te thus are led to investigate when two such paths in

W can be continuously be deformed into each other without leaving that

class. We introduce as P the set of paths y: [o,11 -, W such that

y(o) - 1 and y(1)EW*:

(1.4) P - (y: [o,1] * W I y continuous, y(o) a 1. and y(l) = W*}.

We give the set P the compact open topology and consider the equi-

valence classes defined as follows: We call Y, and Y. e P equivalent,

Y1 ^ Y2 if there exist a continuous defornation 6: [o,11 x (o,11 * W

satisfying

d(t,o) a y1(t) and 6(t,1) - y2(t)

(1.5) d(1,O)Ew* , _i

~~(o) -u l

A simple example of a path in P is an exponential path. defined

as follows. Pick a symmetric matrix S 6 X(R2 n), then y(t) a exp(t JS),

o <.t <1 is a path in W. This path is in P if and only if

exp JS r W*, or equivalently if and only if 2,in is not an eigenvalue

of JS for every integer n e Z. Such a path will be called an exponen-

-15-
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tial path. An exponential path corresponds to a constant loop A(t) =S,

o <o t <1 in (1.1).

In order to formulate our first result, we define an index for

an exponential path as we did in the introduction. We assume

exp JS 6 W* and, in addition, we assume the purely imaginary eigen-

', values of JS to be distinct. As index of the exponential path y 6 P,

y(t) = exp(tJS) we then define

(1.6) ind(y) - j(S) 6 Z,

where the righthand side is defined by formula (5) of the introduction.

Tkeoxem 1.1.

Each equava.en.e ctsa6 od P contain an exponentiat path, y(t) -

• a;
- !  exp(tJS) So, which lnd(y) "6 de(ijted as above. A22 4such exponentia.

I p*pM in the 6ame equva.tence .,ta, have tke aame index, and exponent~ia

path4 in diLeyen componen . have di6een-t indcea. To eveg ntege

j e Z thee i6 exacatj one equivatence r. having the index J.

In view of this theorem it is only necessary to define the in-

dex for the special class of paths in P chosen above. The theorem

says, that the index actually depends only on the component of P con-

taining the path. But at the end of the proof of theorem we will be

able to define an index for every y 6 P intrinsically.

-16-



Theorem 1 of the introduction is an immediate consequence of

theorem 1.1. In fact, the deformations (1.5) can be chosen to be diffe-

rentiable and to satisfy (1.3) for every o <_ a <_ 1. This can effective-

ly be proved using the local representation of canonical maps by means

of 1generating functions"; for details we refer to (13]. The proof of

theorem 1.1 proceeds in several steps.

1.1 Contractible loops in Sp(n,R)

Every real symplectic matrix M can be represented in polar form as

(1.7) M a P.O

where P (14T)1/2 is a positive definite symmetric und symplectic

matrix, and where 0 - P-1K is an orthogonal symplectic matrix. This

representation (1.7) is unique. The set of the above matrices P has

the unique representation:

a1 a TT
(1.8) P - exp A, A =2 a al, a2z a,

a2  -aI

where aja 2 CZ(Rn). In particular, the set of positive definite symplac-

tic and symmetric matrices is contractible, so are then all the loops in

this set.

Each matrix 0, which is orthogonal and symplectic has the form

(1.9) 0 1 2 ) = uI + iu2]u2 u 1

-17-



with - ul + W2  belql * itry matrix in .C(Cn). This correspondence

is one to om. These si1p facts are well Lewn, see for example M. Levi

(161 and Gelftae-Litkii 1171.

Let sm ji to,13 - Sl(sj) be a' continuous arc of symplectic

matrices and let U(t) ba tM associated arc of unitary matrices. Let

a(t) be a coitraw fwactEo such that det V(t) - exp (iA(t)). Then

s(1) - A(o) 4mp" oil a y. This number will be denoted by A(y).

If y is a loop, I.e. y(o) a y(l), then &(y) is an integer multiple

of 2W.

Lena 1. 1. TMImp Y 4A ewc*b~.4a Sp(n,R) i6 and onty i6

a(y) - a.

Piooi The statmiit is w&I knm for the group U(n) of unitary

matrices, to wkilb wt sMel Peduc the Lamu. According to (1.7) we have

y(t) - P(t) 0(t). when Pt) is a loop of positive definite symmetric

and symplectle matrices Ug e ntractible, while O(t) corresponds by

(1.9) to a le of mitary mtrices, which is contractible if and only

if A(y) a *

1.2. C e of 1 445t Wis

A symplectic basis in Ria is a basis (e,...,en, f,.0.fn) -:(e,f)

such that for ib oatrix N. a (e,f) 6.L (9iP) we have MTJM = J and

MTM - I. TtW ft Is sy1eatic nd orthegonal. Since the unitary group

is-connected, the set of s)ylectic basis is also connected.

-18-
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Let V be the unitary matrix associated to an rl E Sp(n,R),

and let 00 be a symplectic orthogonal matrix, then the unitary matrix-1- -1 -. -

associated to 0' *M'0 e Sp(n,R) is u u * uo , where uo  corres-

ponds to 00. Since det( U-1 . V .Uo) = det- we conclude:

Lenam 1.2.

Let O(t) be an aw. oj 4mpZectic otthogonaZ mattZces, and Zet

y(t) - 0(t)rl.M'O(t), So, Aome M e Sp(n,R). Then A(y) = o. Thu6 i y

i6 an a~c endiLng at M, and iL6 0 Z6 Amptectic oAthoganaZ, then y can

be extended to an wtc y ending at 071 M'0 in Auch a way that

A(y) .

1.3. Changing the spectrum

Let M r Sp(n,R) then the eigenvalues of M. occur in groups: if X is

an eigenvalue, then also x- 9 and T -1 are eigenvalues. Let E(a) =

- E. be the generalized eigenspace for the eigenvalue a of M, i.e.

the nullspace of (M-a)2n . The following statement is well known:

Lemm 1. .

16 aB A 1 then < JE, E > = o.

Poo6: Let Ek be the nullspace of (fl-a) k , so that o= E° 0 E1 C... C

2~n  k e
C E =CL * E. It suffices to prove < JE, E> = o if as A 1 for all

k.L > o, which will be done by induction with respect to k + Z. For

k + o the statement is trivial and we shall assume < JE<, E8 ' = 0

-19-
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k k-1

for s+x < k+S. Let s EC and s and sot s

M =E the last two terms vanish by the indution k# iS an hence

Bs(tk Es,

ad -1) < Js, s > - o, which proves the Lea.

We next describe how to change the eigenmalweo of an tmlve
group of a symplectic mtr, in such a way that the e m main un-

changed. Wie pick an eigenvalue X of N 4 Sp(n.4t). For every ciwlex
number v e C, v o we define a nw mtrix K4 by :

M4 1.1 on r(uJ) if u 1 (, " ,1.(-L

M E Q.(#()) a 4,(v) M I E(#(I,)),

1  1
whee (z -zz_, "E or V . Observe the definitio iw t

if x is real, then t is real and if T- x"Int, two V*- - hn

]a

matrix M. is clearly real, it is also sylectic. N ly, if x 4 1(a)

and y 6 E(B), then by Lemma 1.3, < J1x4 l V =' V < jxy ). - o if we A 1.
Assume e a 1 and assume h 1(oxi-eteee-l), then f JN iX, p P.

r< Jx, f a < Jx,y >. If on the other hand e (X9l 1  T ) . Vl en

by construction we agan have < JM Vx, y > < Jlx 9 PV > • < ery j q
hence )T Jo - J proving the claim. We now sll e & avb cam-

V V
struction in order to prove

ah1yo-20-
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Lemma 1.4.

.Let W** C W* be the subet o6 ,nattces whose eigenvoaue witht unit modu-
ZuA a . equa, t., -1. Then W"*' .-6 a st. cng dejormcat~cn rettlt oJ W*a .

P.to,6: The closed upper half disk in the complex plane minus the two

points {o} and {1} admits a strong deformation retraction r(z,t),

o < t < 1 to an arc which is interior to the half disk except at the

points (-1) and (1/2,1 and connecting these two points. We choose

this deformation retraction to preserve reality and unit modulus. In

order to construct r(z,t) just observe that

-1 0 0 /z

is homeomorphic to

2

0

We extend r to the complex plane minus the two points {o} and {1}

by setting r(E,t) = r(z,-t and r(z 1,t) = r(z,t) "1. The deformation

6 - 6(M.t) of W* is then carried out by simply deforming the spectra

of M e W* by means of r leaving the eigenspace alone: 6(M,t) = -iM
-1~ - (Av(),

where v(x,t) a r(x,t)x " , and where the product runs over all the eigen-

value groups of Ml. *

-21-
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1.4 Change to distinct eigenvalues

L ena 1.5.

Any neighbqthood o' M 6 W coittains an at. in W connectLng M to a

mat%x with dh -nc.t eigenva.tue, none oj wh,.I L equa. to -1.

P.wo Assume x is an eigenvalue in the eigenvalue group (x, ' 1,17 - )

of M. By Lemma 1.3, if & E E(x) and if n 6 E(p) then either < &,J>=o.

or u -T "I . Choose an orthogonal basis r'"$'k for E(X) such that

-_1
M& Xcl, and a dual basis nl...,nk for E(X " ) such that

J-n = 6j. Given a complex v ( C; define M as follows:

M C, "X &v .'  M' T1 • - '

Mv nI  n , | T " T
21 ni MV1' v n

if is any of the remaining e2,,..,{k, or n2,...,nk or if E(u)

V (9,x1 ,.ix ), we then set M { = c. One checks easily that M.

is real and symplectic. Now set BV = MVM, then v is an eigenvalue of

B., and if u 9 (x,x-, , T-) is an eigenvalue of M, it is also an

eigenvalue of BV with the same eigenspace. One can verify by a calcu-

lation which we forego, that indeed the dimension of the generalized

eigenspace of B corresponding to x is one less than that of M. A

similar construction can be carried out in the cases that X is real

and that x is on the unit circle. Finally, multiplying A by ecJ with

a small c, if necessary, it can be arranged that -1 is not an eigen-

value. Using induction the proof of the lema follows.

-22-
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1.5 Normalforms for distinct eigenvalues

Assume M E Sp(n,R) has distinct eigenvalues none of which is equal to

-1. Then, as it is easily verified, there is a symplectic base in which

the matrix has a block diagonal form. Every block corresponds to an

eigenvalue group and has one of the following three normalforms, where

we abbreviate

/ COS a - sin a

sin a COSa

(1) Hyperbolic plane (eigenvalue group (o ), s real)

M0 8 M, 0 , ( o

(2) Elliptic plane (X,3-), X = eia, a real.

M-R(), P-1, 0=M, J-* )

(3) Complex eigenvalue group (A,X - , X = oe

(P R(e) 0 )
M = 0 p - R(a)

p o R(e) 0 o1

After the normal form of the block, the corresponding block for P,O

according to the polarform, M = PO and the corresponding symplectic

-23-
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structure are indicated. For the corresponding U one reads off from

these normalforms

f I case (1)
. eia

(1.10) det V j case (2)

1 case (3)

Note also, that in case (2), e = (1,-i) is the elgenvector for the

eigenvalue eI  and < W , Je > = 2i. If 0 is the orthogonal symplec-

tic matrix which puts M into the block diagonal form M= 1 0-Mo, we

can connect the identity and the matrix 0 by an arc 0(t) in the set

of symplectic orthogonal matrices and find by Lemma 1.2

Lemma 1. 6.

Suppose M 6 Sp(n,R) ha6 distinct eigenvaueA none oj which iA equat to

-1, then M ,6 connec.ted by an atc y(t) to a mat'ix Mx 1 in the above

b.ock diagona2 6o'm, .6&c that, in addition, a(y) - o.

Using this result we shall prove

Lemma 1.7.

W* ha, two components, each o6 which iA ,impty ccnnec.ted teta.tve to W.

One component, W*, coi aank the mat-Zx W+ = - id, and the degree o the

6ixed poi.n o o6 the map x -Mx i +1 i.d 1l W.. The othe,'t compo-

nent, W* contaZn4 the mattx

W- -1 ( /2

-24-
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u,:heAe I is he .ZdenLty in (n-1) dimension6. T he degree o M E W.

is-1.

* P.wo :

Pick M e W* and connect it by an arc in W* to an element which

is an block diagonal form, using Lemma 1.5 and Lemma 1.6. Now,

if 8 < o in case (1), as well in the cases (2) and (3), the blocks

are obviously connected to blocks -1 by an arc in W*. Also the block

in case (3) is connected to two blocks of type (1) with s > o by

connecting e to zero with p # 1. One sees that conversely two po-

sitive hyperbolic planes can be brought together and connected to -1.

(Observe that the block in (3) can also be connected to two elliptic

planes, but the corresponding a's will have opposite signs as is clear

since det U a 1; this is known from the study of strong stability

classes, see (161 ). Thus depending on the parity of the number of po-

sitive hyperbolic planes, M r W* can be connected either to W. or to

W+. But these two matrices cannot lie in the same component of W* since

they have different degrees for the fixed point o. That W* is simply

connected relative to W follows now from Lemma 1.4. In fact, if y is
any loop, then as one sees from the above forms, a(y) depends only on

the variation of the arguments of the eigenvalues in the elliptic planes

(case (2)), since by Lemma 1.2 changes of basis do not contribute. By

Lemma 1.4 any loop in W* can be deformed to one on which the eigen-
values of modulus one are all equal to -1, hence to one for which A(L)=o.

By Lemma 1.1, the loop is contractible in W.

-25-
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I.....................
1.6. Proof of theorem 1.1.

Let y E P be given. Extend y by an arc in W* using Lemma 1.7, to a

:4 path 7f connecting 1 to either W+ or W. We treat the case W., the

other case is similar.

Using now the assumption n > 2 we observe that the matrix W.

has countably many real logarithms. Namely, if we define for an integer

LEZ the symmetric matrix A, e ,(R2n) by

-- 0 ln2

00

Ao
'4' I : 1

I n2 0A . -ln2 (2±+1)ir

of

.-

then

JA

W -e , LGZ.

For the special exponential arcs e P, defined by Yz(t) = exp(tJA,),

o < t < 1, which connect 1 with W we find by (1.10) that

A(Yl) a 21t + w(n-1). Pick some 1 6 Z and define the loop y1  by first

following 7 from 1 to W- and then following y k backwards from W-

to 1. Then A(yl) - a(T) - A(yt) = 2ffm for some integer m . Therefore,

if we set s = +m, we find for the new loop .y,. defined by following

y to W but then followinC YS backwards to 1, that o . Pence,

-26-
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by Lemma 1.1, the loop y2  is contractible in W. This shows that the path

y S P and the exponential path Ys, where YS(t) = exp(tJAs), are in the

same component of P.

y(t)

exp(tdA S)  W_

Now consider any exponential path y = y(t) = eJst, o < t < 1

where JS E,=(R2n) has distinct eigenvalues. If the purely imanigary

eigenvalues x of JS are ±iil,...,±lik, normalized so that e s&=iac

implies < 12, 1 > i"I > o, then by means of the normalform (2) in sec-

* tion 1.5 one sees that

k
(1.11) z j

J-l

Extend now this path y to a path " connecting 1 to either W+ or

W_, say W_, in such a way that the eigenvalues of non unit modulus stay

that way up to the last point, so that they do non contribute to the a

of the extended path. If aj, 1 < j <_ k lies in the open interval be-

tween 2nn and 2(n+1)w for some integer n, it is during the defor-

mation changed to (2n+1)w, i.e. moved to the closest odd multiple of .

Therefore, if X = ic denote the purely imaginary eigenvalues of JS we

find

(1.12) (L - z [( )1 - Wj(S).

-27-
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Of course, since W* is simDly connected relative to W, any way of

extending y(t) = e to W. with an arc in W* cives a Y, with

( -j(S). It follows that all exponential paths in the same

component of P have the same index, defined by . '), and if two ex-

ponential paths have the same index, they lie in the same component of

JAt
P. In fact, let e be the arc connecting 1 with W to which

eJSt is deformed, then a(e JA ) = j(S). If now yl(t) = ei lies

in the same component as y(t) = eJSt, it can also be deformed to the

same path eJAr, hence A(eJAt) = iJ(Si), and therefore j(S1) = j(S).

Conversely, if J(SI) - j(S) for two exponential path's, then they can

.lAtbe deformed to the same path e and lie therefore in the same com-

ponent of P. This finishes the proof of theorem 1. *

A We now can define an index for any path y E P, not just for an

exponential path as follows. We extend y by an arc in W* to a path

" connecting 1 to either W+ or W and put

(1.13) j(y) : AM.

.4

In view of Lemma 1.1. and Lemma 1.7. the right hand side does not de-

pend on the extension. It moreover is an integer, which characterizes the

component to which Y(t) belongs.

If y = P, then there is the following relation between the in-

dex, j(y), and the fixed point degree a = deg(y(1)) of the fixed point

o of the symplectic map y(l) C W* : x 'y(1)x, namely:

(1.14) deg(y(1)) a (-I)l(Y)+ n

-28-
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where R2n is the space under consideration. We only have to prove this

for an exponential path y(t) = exp(tJS). By definition of the index we

have j(y) = m+2L, for some integer L e Z, where m is the number of

purely imaginary eigenvalue pairs of JS. Moreover, if z is the number

of hyperbolic planes of JS, then by definition of the fixed point degree

of eJS, = (-1)1. But 2n - 2m + 2U + 4k, where k is the number of

1complex eigenvalue groups of JS, hence z = n-m-2k and the equality

(1.14) follows.

* 1.7 Interpretation of the index as an intersection number

The integer J(y), y 6 P, can be related to the number of oriented in-

tersections of a curve of Lagrange planes with a fixed Lagrange plane.

If w denotes the symplectic structure in R2n  given by the matrix J,

w can introduce the synmplectic structure w, in R2n x R2n by setting

w, - w + (-w). A map M e ZL(R2n ) is then symplectic if the 2-form wI

vanishes on the (2n)-dimensional subspace graph (M): x {(x,Mx)jx G R2n},

that is, if graph (M) is a Lagrange subspace. Hence an arc X(t)E Sp(nR)

gives rise to an arc graph (X(t)) in the space of Lagrange planes. The

diagonal a - ((x,x){x R 2n } is a Lagrange plane, and for any

MG Sp(n,R) we have graph (M) r) a = {o} if and only if 1 is an eigen-

value of M. We now relate the integer J(y), y 6 P, to the number of

intersections of graph(y(t)) with a, o < t < o. Let y be the special

exponential arc y(t) = exp(tJAs) defined previously. Then one verifies

easily that

(1.15) J(y) - n + . (1 - deg(y(1))) = _ r dim(graph Y(t) a).
o t<1

-29-
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where the signs correspond to s o, i.e. they correspond to the

orientation of the rotation in the distinguished elliptic plane which

gives rise to a nontrivial intersection. The right hand side is under-

stood to be zero in case s = o. We remark that dim(graph y(T) )

for some o < 1 is the dimension of the solution space of the perio-

dic boundary value problem x a JA(t)x, x(o) = x(.), where JA(t): =

= y(t).y(t)-,; in fact y(t) is the fundamental solution of this

equation. As the left hand side of (1.15) depends only on the component

of P, we can use formifla (1.15) in order to associate to every element

of a component of P a normalized oriented intersection number even if

the intersections of the particular arc chosen are not "transversal". As

for the intersection theory for curves of Lagrange spaces we refer to

J. Duistermaats paper [181 "On the Morse Index in Variational Calculus",

in which also the relation to the Maslov-index of a periodic solution is

described. As for the latter index we refer to V. Arnol'd [191.

2. Periodic solutions of Hamiltonian equations.

In this section we shall prove theorem 2 of the introduction which

guarantees T-periodic solutions of the equation

(2.1) x * Jh'(t,x), x(o) = x(T)

where h(t+T,x) - h(t,x), and h 6 C2(R x RZn), n > 2. We shall first re-

formulate the problem (2.1) as an abstract variational problem for a

functional in the loop space.

-30-
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2.1 The variational problem

L-'.. R2n )
Let H be the real Hilbertspace H L2(o,T; R . Define in H the

linear operator A : dom(A) C H H by setting dom(A) = u i(o.,T;R 2n)Y

u(o) - u(T)} and Au : = -Ju, u e dom(A). The continuous operator F: H-H

is defined by F(u) (t): = h'(t,u(t)), u r H. Its potential o(u) is

given by

T
(u) I= i h(t,u(t)) dt.

0

F is the gradient of t, that is t'(u) = F(u). Writing the equation

(2.1) in the form -Jx = h'(t,x) one sees that every solution u E dom(A)

of the equation

(2.2) Au - F(u)

defines (by T-periodic continuation) a classical T-periodic solution of

(2.1). Conversely, every T-periodic solution of (2.1) defines (by restric-

tion) a solution u of the equation (2.2). The equation (2.2) is the

Euler equation of the variational problem extr {f(u) I u E dom(A)}, where

(2.3) f(u) < Au,u > - t(u),(2

which in classical notation is simply given by (2) of the introduction,

with periodic boundary conditions x(o) - x(T). Hence in order to find the

required solutions of the equation (2.2) we can just as well look for

critical points of f. We first summarize some information about the

operator A

.-4 -31-
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Lemat 2.1.

The ope.tatot A is seZ2adjon.06, A = A*. It has c2.osd z. tge xid a com-

pact twotv'ent. The *6pect-tum oj A,j(A), is a pw~e poin.t spec..twn aznd
2=r

a(A) = rZ, T L Eve.'y e-Zgenva.&LC X 6 a(A) 'wa4 mu.Lt pZicity 2n
T

and the eigen,6pace E(x) = ker(x-A) is s~panned by the a,%thoganaZ bai

given by the 4otowng toop6:

t e ek = (cos xt) ek + (sin xt)Jek

k = 1,2,...,2n; whe, e (ek I 1 < k < 2n} i.4 the .6tandad baai.s in R2n .
In pa~tJeu~w ker(A) = R2n, that .L con6.46t od the eon.t.v foop..

The proof is easy, see [2]. If b = b(t) is a symmetric matrix
b(t) 6 . (p~n) and if b depends continuously and periodically on t

with period T > o, I.e. b(t) = b(t+T), we define the selfadjoint opera-

tor BE.Z(H) by

(2.4) ( u) a t) = b(t).u(t), u H.

Luuuwa 2.2.
(i) The ope .o L A-B de. ed ont dom(A) we deeadjo. lad hh eompc.a

4te otvue. Thus Lt ha. az pu .e p:ont 6pect'um o(A-B) * ap(A-B).

(I) 0 6 o(A-B) .c and only Zd 1 45 a F~oquctmut pYte.t ot the UineaA

(21t)( b do not depend an t, then the apeLor. B ccwiu:es

iLth the p,.ojectiona P: - f dE 6o% eve-tc > o, whete (E.) is the

apec~t.o. teotation o A.

-32-
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P.ooj: (i): Standard arguments (see (21 ) and Lenna 2.1 imply that A-B

is selfadjoint and has compact resolvent, since A has Eompact resol-

vent. (II): o e a(A-B) if the equation (A-B)u = o has a nontrivial

solution u e dom(A), that is u E H (o,T; R2n) and u(o) = u(T).

Since u satisfies the equation u a Jb(t)u, this is the case if and

only if 1 is a Floquet multiplier of the above equation, as is well

known from Floquet theory. As for (iii) we refer to ([2], Lemma 12.3).,

2.2. Reduction to a finite dimensional variational problem

mI

We shall assume from now on the Hessian of h to be bounded:

(2.5) - < h*(t,x) < 0

for all (t,x) e R x R2n  and for some a > o. From (2.5) we conclude by

the mean value theorem, that the potential operator F satisfies

(2.6) - a Iu-vI2 <_ < F(u)-F(v), u-v > < 8 Iu-v12

for every u,v 6 H. As observed in [11, see also (2], this estimate

allows to reduce the problem on finding critical points of f to the

problem of finding critical points of a function a = a(z) defined on

the finite dimensional space Z: a PH C H, where

Pa I dE

is the projection onto the eigenspace of A belonging to the eigenvalues

4
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in (-8,8), EA being the spectral resolution of A. We assume a o(A)

and have the freedom to pick s > o as large as we need. We summarize

this reduction to a finite dimensional variational problem in the

following

Lemma 2. 3.

Thee ate a 6unc.ton a e C2(Z,R) and an inject tve C -map u: Z -* H

kaving iA 4amnge .n the domaLn o the opea~tAc A,u(Z) C .dom(A), and

-!. h im(u'(z)) c dom(A) 6or. eve',.y z 6 Z, udth the Sattowng prope, -

(i) z e Z i6 a c.t.icat poiZnt o6 the dunction a, i.e. a'(z) = o, iZ and

ony id u(z) ,6 a Ao, uCton o the equ.tion Au = F(u), i.e. a T-

pe.'.odic aotution o6 the HanotLonian equat.Zao (2.1). I u i4 a ,so-

tLuton od Au = F(u), then u = u(z) 6or% c ,tcat point z oj a.

(ii) u haA the doAm u(z) = z + v(z) with Pv(z) - o.

(Iii) The 6unctLion a i4 given by a(z) = f(u(z)) =-Z < Au(z), u(z) > -J2

- *(z)), iLt6 deiv.ative a' i6s gtobaily L4p6chkit: contnuou4 and

a'(z) - Az - PF(u(z)) = Au(z) - F(u(z))

a"(z) - (A - F'(u(z))) • u'(z) - AIZ - PF'(u(z)).u'(z).

(iv) I' F i t..neaA, F(u) = Bu, and id Bu = bu, b a tLme dependent

Aymmet, ic matLx, then a(z) - (A-B)z (HeAe BP = PB i6 used).

(v) Id E i atopoogica 4pace, and ,. F: E x H H is a cotiuou4

map, ,udi that, 6o,. eveg G e z, the un.cton F(a,.): H - H is a

aontinuou potentia2 opewato4 4aso.idgng the etmate (2.6) w'it the,

conr&ttnt i.ndependent o& a, then the coA.AeApondng u = u(o,z) iz con-

tiJ.OU.
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71 7

P-.coi: The proof of this crucial Lemma is contained in ([21 , Lemma 12.2,

Lemma 3.1. Prososition 4.5 and Remark 2.2.). .

In view of this Lemma, the required periodic solutions of (2.1)

are in one to one correspondence to the critical points of this function

a, which is defined on the finite dimensional space Z. It remains to

determine the critical points of a.

2.3 Morse theory for the reduced problem

In order to find the critical points of a we shall apply the

Morse theory discribed in section 3 below to the gradient flow defined

by

(2.7) z a a'(z)

which, according to Lemma 2.3 (1i) does exist. We shall first show, that

the set S of bounded solutions of (2.7) is compact, provided the

assumptions of theorem 1 in the introduction are met. We therefore shall

assume, in addition to (2.5), that our Hamiltonian vectorfield is asymp-

totically linear, requiring that

(2.8) Jh'(t,x) = JA (t)x + o(lxl), lxi - -

unilirmly in t, where A (t+T) = A.(t) is a continuous loop of symmetric

matrices.
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Lema2. .4.

A6urne (2.8), and a.sue the LLncat Hani~tonian equaon x = JA(t)x

to be nondegene.ate. Denote Zt index by j.. Then the set S o'

bounded sotuwtons o' (2.7) 164 compact, hence ho an index, whch Zs the
c, m

homotopy type oj a pointed spheAe S o' dime6ion m:

:(S S--1 . dim Z -j..

m
TkeAeuoe p(t,h(S)) = tm

Poo :

By theorem 1 in the introduction there exists a continuous family B (t),

S<_ a < 1 of loops B a(t+T) - 8(t) having the properties that 1 is not

a Floquet multiplier of x - JBa (t)x for all o < a < 1, and that for

a - 1, B1(t) - A (t) and that for a a 0, 80(t) - Ao is a constant loop

having the index j, - J(Ao) as defined in the introduction. Define the

continuous family F of potential operators

(2.9) F (u) Bau + a(F(u) - A u),

o < a < 1 and u 6 H. It has the properties that for a 1 1, F1(u) - F(u),

and for a a o, F0(u) - Aou. Moreover F satisfies the estimate (2.6)

for some B > o which is independent of a and thereftirE gives rise by

Lemma 2.3 (v) to a continuous family of gradient systems.

(2.10) z a(z), z e Z.
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With u u u(a,z) we have by Lemma 2.3 (iii) and by (2.9):

(2.11) a' (z) - Au - F,(u) - (A-B,)u-o(F(u) - A (u)).

-. We shall prove, that there are constants v > o and 6 > o independent

of a, such that for all z r Z

(2.12) !a,(z)l > "zj - 6

First observe that by Lemma 2.2 (i) and (ii) o a(A-Bo), and, since

a . B° 6 .(H) is continuous and the resolvent of (A-Bo) is compact,

1
there is a constant v > o independent of a, such that (A-B) ez(H)

and I(A-B_)-I[ <_ v 1 , hence for every u c dom(A)

(2.13) [(A-Bca)ul_ •. VIul, o < a < 1.

On the other hand, from (2.8), we conclude, that

(2.14) lm 1 IF(u) - AOu[ = o.
lul.- jui

Since by Lemma 2.3 (11), ju(a,z)12 = iz,2 + jv(a,z)[2, hence Iu(o,z)!> zI,

the claimed estimate (2.12) follows from (2.11) together with the estimates

(2.13) and (2.14).

Let S a denote the set of bounded solutions of the equation

(2.10), that is S (z e Z I there is a bounded orbit containing z}.

Then the estimate (2.12) implies the existence of a compact set K C Z

containing S a in its interior for all o < a < 1. Thus K is an isolating

neighborhood for So, a 6 [o,11, which are therefore related by continuation
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([41 section IV.I Theorem 3.1). Thus by the invariance of the homotopy

index ([41 section I.1 Theorem 1.4), the homotopy index of S. is in-

dependent of a G (o,1] , i.e. h(S a) = h(S). For a = o, the vectorfield

a' is, in view of Lemma 2.3 (iv), given by
a

(2.15) ao(z) - (A-Ao) z.

Since by assumption o 0 a(A-A0), it follows that for a = o, the isolated

invariant set S0 of (2.15) consists just of the hyperbolic rest point

z - o, hence So a (o). It is shown in section 3 that the homotopy index

of a hyperbolic rest point is the homotopy type of a pointed shere Sm

whose dimension, m, equals the dimension of the stable invariant manifold

of the rest point. Hence it remains to compute the dimension m of a

maximal subspace Z+ of Z such that (A-A0 )IZ+ > o. Here it is impor-

tant to recall, that Ao is the bounded linear operator, which is defined

as in (2.4) by a symmetric matrix, also denoted by Ao , which moreover

does not depend on t. For this special case the dimension m = dim Z+

has been computet in ([3], Lemma 1). In fact, denoting by j(Ao ) the

integer introduced in section 1, it is proved in that paper that31
M = dim Z - j(Ao). Since j, = J(Ao), the Lemma is proved. •

We next consider a special periodic solution of (2.1), namely an

equilibrium point x0  of the Hamiltonian vectorfield, which we assume to

be the origin, such that Jh'(t,o) = o for all t e R.
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Lemmai 2.5.

Assume o i6 an equiZtb-tiu,.m poi.nt o the HaomiZtc.i n equaticn, and .swne

the ttiviat pevriodic Sotwton, xo(t) = O, t E R to be nondegenenL&at mid

denote ita index by j 0  Z. Then the cot.upond fg cl tct po.itt

zo = o e Z i apt i6otated invwtZnt 4et, who6e index is aiven bi:

0n
h({zo}) =15 m°  , mo .m dim Z - jo

9.-i m
,. Theredore p(t,h{zo})= t 0.

Ptoo.. Since o is an equilibrium point, Jh'(t,x) - JAo(t)x + o(ixj)
as Ixi -* o, with Ao(t) =.h"(t,o). By assumption xo(t) - o is nondege-

nerate and therefore by Theorem 1 there is a deformation Ba(t) = Bo (t+T)

connecting the loop Ao(t) - B1(t) for a a 1 with a constant loop

Bo(t) - A1 for which the index is given by J(Aj) = Jo. By definition,

1 is not a Floquet multiplier for the linear systems x = JB (t)x,

a 6 jo,l) . Define the family Fa  of potential operators as

F0(u) - Bau + a(F(u) - Aou)

then F1(u) - F(u) and F0(u) - A1u, where the operator B ,A,A 2 e (H)
are defined as in (2.4) by means of the corresponding matrices. F satis-

fies the estimate (2.6) for a 6 (o,1] with a constant 0 independent of

a and, by Lemma 2.3, gives rise to a family a; of gradient systems on

Z with a corresponding family u(a,z), such that a;(o) = o and u(a,o)=o

for a e [o,11. Explicitely we have with u - u(a,z): a.z) = (A-B )u-

-o(F(u) -AoU). As in the proof of the previous Lemma there is a v > o, such

that for a 6 1o,1] we have the estimate I(A-Ba)ul > v!ul, for u 6 dom(A).

Moreover, since F(o) o and F'(o)= Ao e (H) we have F(u) - AoU
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o(,u,) as Iui "o in H. With ju(c,z), > 'zI vie conclude that there

is an c > o independent of a, such that if Izi < e then

la;(z)! > ! z. Hence z = o is an isolated critical point for every

a e [o,11 and therefore an isolated invariant set of the corresponding

gradient flow. As in the proof of the previous Lemma we conclude that the

index of this isolated invariant set does not depend on a • (o,11 and

so is the index of the critical point of a'(z) for a = o, which by

Lemma 2.3 (iv) is given by ao(z) = (A-A1 )z. Sinte o @ a(A-Al) the

critical point z = o is hyperbolic and hence the index is the homotopy

type of a pointed sphere of dimension m0, which as in the previous Lemma

1
is computed to be equal to Z dim Z - Jo, with Jo J(A0 ). This finishes

the proof of the Lemma.

We shall use this Lemma in order to establish a relation between

.the index of a nondegenerate periodic solution of the equation (2.1) and

the index of the corresponding critical point of the gradient flow on

the loopspace.

Lenma 2.6.

Let xo(t) be a nondegene.ate T-peLiodcc sotouition od the Hamitonia n

equat on (2.1) with index J. Then the co'vaezponding ct.cat point, zo ,

o6 the 6u.nctionaL a on the toop6pace Z i.s an i.otaed ,. fvCAimit 6e-t

with index given by

h({zo}) =[S m = dim Z -j.

TheAedo.'zte p(t,h({zo})) = tm. ,Moteove't, the signatwte cj the Hc. s-5an oj
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a at zo i equat to 2j. The ZocaJt degree o a' in a flZe*hbothIod

06 zo iA equa. to (-I)n+j .

Let z be the critical point of a corresponding to the given periodic

solution xo(t), such that u(zo)(t) - xo(t), and set uo = u(zo). By

Lemma 2.3 (111) we find a"(zo) = (A-F'(uo)) u'(zo), where F'(uo) 64(H)

is defined by the matrix h"(t,xo(t)). By the nondegeneracy of the

periodic solution we have by Lemma 2.2 (ii) the estimate j(A-F'(uo))Uj>

lv Jul for u G dom(A). Moreover, since u(z) - z + v(z) with Pv(z) =o

22 2 2we conclude, that Iu'(zo)I - i + Iv'(zo)I > kW for every

c 6 Z and therefore la"(zo)cl 'vl~l for every c = Z. Therefore zo

is an isolated critical point. To compute its index, we shall reduce the

problem to the situation of the previous Lemnma and define the following

family of potential operators satisfying (2.6):

(2.16) F,(u) a F(u + ouo) - aF(uo), o a [o,11

Clearly Fo(u) - F(u) and Fj(u) u F(u + uo) - F(uo) and so F(o) = o

and F'(o) a F'(uo). Put va: - (1-a)u o , we claim

(2.17) AvQ - F (v,).

In fact, since uo is a periodic solution, we know Au0 * F(uo) and

therefore Av. - (1-e)Au. - (1-a) F(uo). On the other hand

F,(v,) a F(v, + cUo) - oF(uo) - F(uo) - oF(uo) and hence the claim follows.

Denote by a. and u. the family of functionals and maps belonging to
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(2.16). By Lemma 2.3 there is to every v in (2.17) a unique critical

point z of a such that

v a - u(a, z a)

The critical points z are isolated. In fact, since F'(va) = F'(uo)

we have for the Hessian of a. at z.:

a"(z ) (A-F'(uo)) • u'(Z )a a0

and therefore we have for a E [o,1] the estimate Ia"(z_)I >W vic¢ for

aa
all c e Z and for some v > o independent of a. Hence the isolated

invariant sets S, {Z } of aI are related by continuation and there-
a a a

fore h(S) is independent of a and hence is equal to the index of the

critical point z1 - o of the flow a = 1. This flow is defined by aj(z)

belonging to the problem Au = G(u), where g(u) = F(u + uo0) - F(uo).

Since G(o) - o and G'(o) = F'(u ) the problem is reduced to the proof

of the previous Lemma, where this time AO(t) is replaced by h"(t,xo(t)),

x0(t) being the periodic solution. The first statement now follows by a

further deformation of the gradient aj to the linear system (A-A1) (z)

for some constant loop A1 with J(A1) = J. To prove the second part of

Lemma we simply observe that by definition of the space Z and by Lemma

2.1, dim Z - 2n + 4t for some positive integer z. Hence for some open

neighborhood U of z we have deg(U,a'(z),o)= signum(det a"(zo))-
• n+j

* (-1) , as claimed.
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Pxoo6 o .theotem Z.

Set d 7 dim Z, d is an integer. Let S be the set of bounded orbits

of the gradient flow z a Va(z). It consists of critical points of a

and of connections between them. The critical points corresponds by

Lemma 2.3 in a one to one way to the periodic solutions of the

Hamiltonian equations (2.1) we are looking for.

By Lemma 2.4 the invariant set S C Z fs compact and of
.M

homotopy type h(S) = [S ] with m. = d - j. This is not the index of

the empty set which is a pointed one point space hence has the homotopy

type [({pl,p)] for an arbitrary point p. Therefore S $ 0 and be-

* cause the limit set of a bounded orbit of a gradients system consists

of critical points, the function a possesses at least one critical

point and consequently the Hamiltonian equation admists at least one

T-periodic solution.

1[Reinak: As a sideremark we observe that the existence of one critical

point could also be established by a degree argument. In fact, it follows

from Lemma 2.4 for a large ball a C Z, that deg(n,a',o) = (-1) •

m
.40.

If the periodic orbit found above is nondegenerate, it has by

Theorem 1 an index denoted by j e Z. The corresponding critical point

z of a is then, by Lemma 2.6, an isolated invariant set with index

h((z}) [S", where m a d - J. Assume z is the only critical point

of a , then S - {z}, since we are dealing with a gradient system and

therefore h(S) - which, on the other hand is equal to [S I and
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consequently m a m.. Therefore if j j. and hence m # m. there must

be more than one critical point of a

F-.

Assume now that the Hamiltonian system possesses two nondegene-

rate periodic orbits having indices j, and J2. We claim that there is

at least a third periodic orbit. In fact, if this is not the case, then

the isolated invariant set S contains precisely two isolated critical
mI

points z, and z2 with indices h({z }) ai 1, m1 - d- j, and

h((z 2}) . (S721 m2 x d - J2. If we label them such that a(zl) 5 a(z 2 ),

then (zl,z 2) is an admissible Morse-decomposition of S. From theorem

3.3 we conclude the identity p(t,h({zl})) + p(th(fz21)) = p(t,h(S)) +

+ (1+t) Q(t), which, by Lemn 2.6, leads to the identity

t + tm2 tme+ (1+t) Q(t).

Setting t - 1 we find the equation 2 - 1 + 20(1) with a non-

negative integer Q(1). This is nonsense, hence we must have at least

three critical points of a.

Assume finally all the periodic solutions to be nondegenerate

and denote their indes by Jk' k - 1,2,... They correspond to the critical

points of a, which are isolated. Since S is compact there are only

finitely many of them, say (z1 ...,9zn). We order them such that

A(zi) : a(zj) if I < J. Then (Zl,..z n) is an admissible ordering of

a Morse decomposition of S, and by Theorem 3.3 and Lemma 2.4 we have

n m
z p(t,h(zk)) a t + (1+t) Q(t),

k- 1

t -44-a!



with m. d - i. By assumption the periodic solutions are nondegenerate,
mk

hence by Lemma 2.6 we know p(t,h(zk)) -t k, mk - d - 3 k' so that

k t04r tmk tm+ (1+t) Q(t),

k-i

which after multiplication by t d , d 1 dim Z becomes the advertized

identity in Theorem 2. We conclude that there is at least one periodic

solution having index j.. Also, setting t = I we find n = 1 + 2 Q(t),

hence the number of periodic solutions is odd as claimed in Theorem 2.

This finishes the proof of Theorem 2.

As an illustration, we assume there are precicely 3 nondegenerate

periodic solutions with indices Jk' 1 < k < 3. Then, by (2.19)9

t + t + t a t + (1+t) Q(t), hence Q(t) - 1 and therefore
Q(t) - t for some integer t. We conclude that one of the ks agrees

with j., say J3  i,. The remaining indices are therefore bound to

satisfy Ijl-j2l - 1. It would be interesting to have an example of a

Hamiltonian system realizing this rather special situation.
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3. Morse theory for flows.

'=. q:3.1. Set up, Morse decompositions, isolated invariant sets.

Let r be a topological space. A flow on r is a continuous map frcm

r x R onto r, (y,t) -y.t satisfying for all Y e r and all

s,t m R the two conditions y.O = y and (y.s).t = y.(S+t). For two

subsets r' c r and RI C R we set r' .R' = {y-t e r I y 6 r' and

tE R'}. A subset I c r is then called invariant, if 1.R I. If

N c r is a subset we denote the invariant set contained in N by

I(N):

(3.1) I(N) : -fy N I yR C N)

Clearly I(N) is invariant, it is closed if N is closed. For a sub-

set Y c r we define its w-1llmit sets by

(3.2) w(Y) - I(cl (Y-[o,-))) and w*(Y) = I(cl {Y.(-40,o]1).

It follows from the definitions, that if I is a closed and

Invariant subset of r, and if Y C I, then w(Y) and w*(Y) are

closed and invariant subsets contained in I. If, in addition, I is

compact and Hausdorff relative to I and if Y is connected, then

w(Y) is connected too.
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Deiniton (3.1) (Moue decompo P .tion}

Assume I is a compact, Hausdorff, invariant set in r. A Morse de-

composition of I is a finite collection {M }, G p of subsets

M C I, which are disjoint, compact and invariant, and which can be

ordered (MiM 2 ...,SMn) so that for every y 6 I \ U M. there

are indices i < j such that

,(y) C Mi and w*(y) C M

Such an ordering will then be called an admissible ordering. There may

be several admissible orderings of the same decomposition. The elements

M of a Morse decomposition of I will be called Morse sets of I.

For an admissible ordering (MI *. Mn) of a Morse decomposi-

tion of I we define the subsets Mii C I as follows:

(3.3) M. : .(y e- I I w(y) and w*(y) C Mi U M i+1 U ...U M}.

In particular M. = M . The following statement then follows immedia-

tely from the definitions.

PkopoP..tion 3.1.

A4sume (M 9... ,Mn) Z. an o, Z.6,.a.bte otdet'ing od a Moue decompo,,t,.'n

o I. Is i <J, then M1, ... , . ... , Mn )

i4an adnZ.,.sibte ot'deing o6 a Motse decornpo. Zt~on oJ I.

Moreover, (Mi,Mi+I,...Mj ,Mj) ia an a.dnmsbtCe o.de,'.ng oi a Mtoe

decomposZt.ion o' M i
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In the classical Morse theory the topological space - = M is

a manifold and the flow under consideration is the gradient flow of a

function defined on M, which is assumed to have finitely many critical

points. These critical points serve as the sets of a Morse decomposi-

tion of the invariant set I = M which in this case is the whole mani-

fold. The statement of Morse theory then relates the dimensions of the

unstable invariant manifolds of these critical points to algebraic in-

variants of the whole manifold. In our more general setting, the in-

variant set I is just a subset of r , and the flow is not necessari-

ly a gradient flow. The aim is to relate algebraic invariants of the

Morse sets of a Morse-decomposition of I to algebraic invariants of

all of I. The invariants will depend on the behavior of the flow in a

neighborhood of I. In order to be flexible in the applications we shall

introduce the notion of a local flow.

Ve6iZntion (3.2). (Locat dtow)

Assume X c r is a locally compact and Hausdorff subset of r. For

simplicity assume X to be a metxic space. X is called a local flow,

if for every y e X there are a neighborhood U c r of y and an

e > o such that

(X n U) • [0,C) Cx

To illustrate the purpose of this notion in the applications we

mention some examples: 1. Consider on r = R2n  the flow of a time in-

-48-

+oe° .. . . ... ° °°, ,- - • 6 - - ' .*. o. . . ." ' . °



dependent Hamiltonian vectorfield given by a function h. Then h is

an integral of the flow. If the invariant set I is contained in the

set {x E R h(x) = c}, this energy surface is a local flow con-

taining I. 2. We point out that there are many ways meetirg local flows

if one studies partial differential equations, which are not defined on

locally compact spaces ab initio. To be more precise ;e describe in the

Appendix a system of parabolic equations, which leads in a natural way

to a local flow..

Ve64A4'on 3.3. (Iotated invwiant 6et)

Let NC X be a compact subset of a local flow X. If

I(N) C int N (relative to X)

then N is called an i otating neighbo, ood (in X) and I(N) is

called an i.:otJated invariant set. (Note that the interior of N may

be empty).

Pftopo.6Ltion 3. 2.,

A64ume S to be an Zaotated invac t 6et in the .ocozL Sow X nd

{et (M. P be P b a Mo,e decompo,,Lton o6 S. Then the 6et6 Mir ,e.

aA o i6ot.ted invw&a.nt 6et6 in X.

Pkoo&: By assumption there is a com;iact N D S with I(N) = S c int N

(relative to X). Pick any compact X-neighborhood N of a set Mi7

which is disjoint from the remaining Morse sets and contained in N.
This set N is an isolating neighborhood of M . Let y e I(N ), so
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that y.R C N hence y.R C N and consequently y e S. Since both

w(y) and w*(y) are contained in N they cannot be in any otherIT

Morse set other than M . From the definition of a Morse decomposition

it now follows that y E M and thus I(N) = M C nt N relative

to X.

2. Index pairs for Morse decompositions

If Z c Y c r are subsets, we call Z positively invariant relative to

Y, if y E Z and y.[o,t C Y together imply that y.[o,t] c Z. Under

a compact pair (Z,Z) we mean an ordered pair of compact spaces with

Z C Z2. The following concept is crucial.

Ve&,nition 3.4. (Index PaZ')

Let S be an isolated invariant set in the local flow X. A compact

pair (N1,No) in X is called an index pair for S, if

() cl(N 1 \ NO) is an isolating neighborhood for S.

(ii) N0 is positively invariant relative to N1

(iii) if y r Ni, and y.R+ 9! N1 then there is a t > o such

that y.[o,t] C N1 and y.t E N0 .

Observe that positive orbits can leave N, only through the

"face" N0. We illustrate this concept by an example. We consider
R2• .

r X •R and the flow defined by x=x, y =-y. The set S =o} is

an isolated invariant set.
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S

~ '1 /

Any closed square Q : N1  centered at o with N0  being the closed

faces left and right can be taken as index pair (N1,No) for the set

S.

The algebraic invariants for an isolated invariant set S re-

ferred to in the previous section will actually be invariants of an in-

dex pair for S. It will turn out however that these invariants do not

depend on the particular choice of an index pair for S. In this sence

they will depend only on the way S sits in the local flow X. The

first step is to construct an index pair fcr an isolated invariant set,

which is done in the next theorem.

Theotem 3.1. (Exiatence oj a SitLation o index pWi1l

Let S be an iJotated Znvatiant 6et und Zet (Mi,... 9Mn) be an ad-

wnissible ordering o a Moue decomposition o6 S. Then there exits an

incAea. ng aequence o compac.t set

(3.4) NO 0 N1 C ... C Nn ,

4wch that 'or any i < j, the pai' (NjNi) Z an index pji.C d0r M.

In patticutat (Nn,N) is an index pait. 6o, S, and (N. ,N. .) iz an

indexpai,% Jo4 Mj. Moreover, given any i~otat ng neZghbc.'hood N o S

and given any neighborhood U o6 S, then the s Nj can be cheen
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z o that cl (Nn \ NO) C U and 4uch that the sts Nj xr*e pcs&.Ctvey

invatZ n t eative to N.

The rest of this paragraph is devoted to the proof of this

theorem (Lemma 3.1. - Lemma 3.4.). We first choose any isolating neigh-

borhood N of S, hence I(N) = S, and define for j = 1,2,...,n the

following subsets of N, which stay in N in forward respectively

backward time:

It {y 6 N y-R+ C N and w(y) C U ... U M }
I( = {y C N y-R C N and w*(y)C MI U ... U M.

We claim that It r Mi In fact, if y e I+ r I> then y-R C N

and hence y E S. Furthermore w(y) C Mi u ... U Mn and.

W*(y) C Mi u ... u M., and the claim follows from the definition of a

Morse decomposition.

Lem 3.1. The &et6 I oAe compact3

Proo6: a) The sets I+ and I are compact: Observe I+ = (y e N

y.R+ C N). Therefore if y 9 I then y.t* 9 N for *some t* > o. By

the compactnes of N and by the continuity of the flow, there exists

an open neighborhood U c r of y such that U-t* r) N z *. Conse-

quently if y E U r) N then y 9 I and N \ I+ is open relative to

N and hence I+ is compact. The proof that I- is compact is similar.

b) The special case n = 2: Let (M1,M2) be an admissible*1-

ordering of a Morse decomposition of S. By definition I+ c 1+ and by
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1 12- ,..,a) the set Itl is compact; it remains to show that Iis closed. Let
+ .9.

Y l11 Yn E 12, then y 6 1+, hence w(y) C M U M2  and we have

to show w(y) C M2. Assume by contradiction w(y) C M . Since M19M2
are disjoint and compact we can choose open neighborhoods U1 and U2

of M1 and M2 with cl(U 1 ) ', cl(U 2) a #. Since w(yn) C M2  and

W(y) C M1  there exists a sequence tn  such that yn.[ tn,-) C U2  and

there exists a sequence t" such that Yn tn 6 U1. Therefore we find

a sequence tn  such that yn.itno) C N \ U1  and Ynt C N \ (UlU' 2 ).

Take a subsequence such that y* - 1in (Yn.tn) exists, then

• J! M1 U M2  and y*[o,-) C N \ U1  and therefore w(y*) C M2. If the

sequence (tn) is bounded, then y* 6 y-R hence w(y) - w(y*) C M2

contradicting w(y) c M1. If the sequence (tn) Is unbounded then

given any t > o, y*.[-t,o] is a limit of segments yn .t n.[-t,o]

o n.[ tn-t, t n]. For n large these segments are contained in

Yn.R C N and it follows that y*-J-t,o C N. Since this holds true

for every t > o, the set y*.R" and hence y*.R is contained in N

and therefore y* E S. Since (M1,M2) is an admissible ordering of a

Morse decomposition of S we conclude from (y*) C M2  that y* 6 M2

contradicting y* 9 M1 U M2.

c) The general case: We observe that if j > 1, then I+ is

simply the set I where Y+ corresponds to the Morse set -
2 2~ 1 1  22 Mn As milr e

of the two decomposition (9, - M(J.1)1,2 - Mn ) of S. A similar re-

mark applies to I. I *for j !_n, hence the Lemma follows from b). *

For a subset Z C N we define the set Z C P(Z) c N as the

"swept out set" of Z by the flow in positive time as follows:
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(3.7) P(Z) : (y e NI there exist y' c Z and t' >.o such
that y'.[o,t'] c N and y'.t' y}

The set P(Z) is positively invariant relative to N.

Lemma 3.2. Let V be any r-neghbothood o6 I-. Then thee . a czrompaet

N-te..Lgbontood Z o6 I 6u.h that P(Z) 4a compa.ct and P(Z) C V.
0

P'wo6: Since I- and I+ are disjoint and (by Lema 3.1.) compactJ j+1

we can pick open X-neighborhoods V+ of I and V" of I suchJ+1 3
that V C V and cl(V+ ) () cl(V ) a 0. We first claim, that there is a

t* > o with the property, that for every y E N \ V the arc

y.[-t*,o contains a point in V+  or in r \ N:

(*) if ye-N \ V" then y.[-t*,oI t N \V +.

In fact, if y 6 N \ V and y.R" 9! N there is a t= t(y) such that

y-(-t) ! N. If y-R C N, it follows from y 9 1- that
3

W *(Y) C U ... Mn c I + CV+, and there is a t ty) so that
j+I1 n j+1

y.(-t) e V+ . In either case there is a neighborhood W of y such that

W.t(y) is contained in the complement of (N \ V+). The claim now

follows since N \ V is compact. In order to define Z let y 6 1-$

then y.R C I- c V" and we can pick a compact neighborhood C of y
j Y

such that C .[-t*,o C V'. Since by Lemma 3.1. the set I is compact,

a finite collection of such C s cover I-, and we let Z be theiry ,

union. Z is a compact neighborhood of I and we claim that P(Z) C V-.

Assume not, then there is a y e P(Z) with y V'. By definition of
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P(Z), y a y'.t' for some y' r Z and some t' > o and

y'.[o,t'] C N. Pick T such that y'[O,T) c V" and y*:- y'.T 6 N \ V"

Then y*'[-T,o) c V and y*(-'r) =y' r Z. By definition of Z,

.' .[-t*,o] c V',hence y".[-(t*+r),ol c cl(V') c N \ V+ in contradiction to

(*) hence P(Z) C V_. It remains to show that P(Z) is compact. We

shall show that the complement of P(Z) in N is open and assume

y 0 P(Z). Then w*(y) 9 M u ... U M. and therefore there exists a

t z t(y) such that y(-t) 0 N \ V+. Let t1 - sup {t > oly.[-t, 01

C N \ V }, then y.[-tlaO C N \ V since N \ V+  is closed. Moreover

y.[-t1 ,o] n Z - * since y 0 P(Z). Because Z is compact there is a

tz > ti such that y.[-t 2,o r) Z - o and y.(-t 2) 0 N \ V+ . By the

continuity of the flow and by the conpactnes of N\V + there is a neigh-

borhood W of y such that W.[-t 2 ,o r) Z = * and W.(-t 2) r) (N\V )

a *. Since P(Z) C V , we conclude, that if y' e W then there is no

orbit segment from Z to y' which is contained in N \ V+, hence

y' P P(Z) and the complement of P(Z) in N is open, hence P(Z)

compact. This finishes the proof of Lemma 2.

The construction of Lemma 3.2 is schematically illustrated by the

following Figure:

V V
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We next construct the index pair (NnNo) for S = I(N). We know

I + n I; = S C int (N). Therefore, since by Lemma 3.1 thi sets T and I-+; +

are compact, we can choose open neighborhoods U+ of It in N and

U" of I- in N such that cl(U +  U) C U n int N, for a given
V..

neighborhood U of S. Define:

(3.7) N0 P(N \ U +).

Then, by definition, N0 is positively invariant relative to N. We

shall prove that N is compact. Since N \ U+  is compact and disjoint

from 118 {yIE+N f ( UMU ... UM n} there is a t* > o such that

y E N \ U+ implies y.[o,t* 9 N. Let y* = lir Yn' Yn E N0. By de-n.-m

finitlon, y * n tn with Yn N \.U+  and yn.[o,tn] C N. There-

fore o <.tn  t* and since N \ U+ is compact, there are a y• N \ U+

and t > o such that y* = y.t with y 6 N \ U+ and y.[o,t] C N.

Consequently y* e No, hence N0  is compact.

In order to define Nn we apply Lemma 3.2 and take a compact

neighborhood N' C U" of the set 1;, which is positively invariant

relative to N and set

(3.8) Nn a Nn u No

By construction Nn is positively invariant relative to N and

(NnNo) is a compact pair.

LeDmwa 3.3. (NnNo) ia an i.ndex pa.iA o6 S. Moeovet cl(Nn \ No) C U.
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Poo: We verify conditions (i-iii) of definition 3.4. ad (i): S and

N 0are compact and disjoint, hence N \ N0 is a neighborhood of S,

also Nn  hence Nn  is a neighborhood of S by construction, hence

, Nn \ No  is a neighborhood of S. Furthermore, since N \ U C N0 and

NIC U" we conclude that Nn \ No C Un U+  and hence cl(Nn \ No)

C cl(U + n U-) c U? Mnt N. In particular cl(Nn \ NO) is an isolating

neighborhood of S. ad(ii): If y E No  and y.[o,t] C Nn  then

y.[O,t] c N and so y.[o,t] c No, since No is invariant relative tu

N. ad (iii): If N e N0  there is nothing to prove. Assume y 6 NU \ N0

and y.R+ 0 Nn. Put t* sup{t >o I y.[o,t] C Nn \ No}, then

Y.t* e cl(Nn \ NO) C Int N (relative to X). We now use the fact, that

X is a local flow: since y.t* 6 X, there is a r-neighborhood W of

y.t* and an c -o such that W r) X.[o,c) C X. Since y.t* a nt N

(rel X) there is therefore an c > o such that y.[t*, t* + el C N. But

Nn  Is positively invariant relative to N and hence y.[ t*,t* + ccNn.

By definition of t* we conclude for a T in t* < < ( t* + e that

y.T 4 No. Since y.(o,T] C Nn, the crucial third condition of the de-

finition of an index pair is verified. .

We finally construct the advertized filtration N 0 N 1C...cN n.

Applying Lema 3.2, the definitions (3.5) and (3.6) to Nn C N instead

of N, we find for every 1 < j ! n-i a compact neighborhood N of

I- such that

1) Ij C N' CNn

I+1
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3) N is positively invariant relative to Nn

Recall that I- r Ij+1 0. Now define iteratively:

(3.9) N - N u Nj., 1 <_j !_n-1.

Schematically: N

N n

0

The following Lemma then finishes the proof of Theorem 3.1.

Lemma 3.4: (NiHi 1 ). i < j, i an inde.x pa,,A 6o,, Mji.

Poog. ad (i): To show that cl(N \ Ni) is an isolating neighbor-

hood of Mji. assume y.R C cl(Nj \ Ni 1). Then y E S and since

Y0 I- we conclude w*(y) C M U ... U Mn . On the other hand

y I1+Z hence w(y) C M u ... u M. and therefore Y E M by de-3+ l3
finition of this set. Clearly M.. C 17 C N. and M.. C I and

I+ n N1-1 , 0 . Therefore Mji C N. \Ni proving our claim. ad (ii):

By construction, Ni 1 is positively invariant relative to Nn, also

N C Nn and therefore Ni1 is positively invariant relative to N.

ad (iii): Assume y 6 N \ Ni 1 and yR+ 9 N. Then y*R+ S Nn, since

N is positively invariant relative to Nn. Therefore, by Lemma 3.3
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there exists a T such that y(O,T] C Nn and yT 6 NO. From y a N.,

we deduce y.[o, I C N. Also, by construction, N0 C Ni. . Summarizing

we have shown: if y.R+ 9 N. there exists a T > o, such that

y[0,T] C N and y.T C Ni1 , hence also the third condition of an

* index pair is verified.

Schematically: M

M 3

* 3.3. The Morse "Inequalities" for a filtration.

The statement of the Morse inequalities for a filtration

No C N1 c ... c Nn of any compact spaces is an immediate consequence

of the axioms of elementary cohomology theory. If (Y,Z) is a compact

pair, we denote by H(Y,Z) the Cech-cohomology with coefficients in

some fixed ring. This particular cohomology is chosen because it is

defined for compact spaces and has the continuity property which does

not hold for singular cohomology, for example. (The continuity property

states: if X - n then H(X) = lir H(Xn)). For the cohomology

theory we need we refer to E.H. Spanier [61 and [71. If A D B D C are

compact spaces, then there is an exact sequence
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0 a 0
o - H (A,B) - H°(A,C) - H°(B,C) o

80 (310 1 11
(3.10) 0. H (A,B) * H (A,C) H (B,C)

a1 2
1 H (A,B) -.

Assuming the modules HP(X,Y) to be of finite rank u.e denote by

r P(X,Y) the rank of HP(XY) and with dP(A,B,C) we denote the rank

of the image of aP . If (X,Y) is a compact pair and if A D B D C

are compact spaces we can define the following formal power series

p(t,X,Y): a E rn (X,Y) tn
n>o

(3.11)
q(t,A,B,C): = z dn(A,B,C) tn .

n >o

The coefficients of these formal series are nonnegative integers.

Pywpo,6iton 3.3.

44ume N0 c N1 c N 2 c ... C Nn axe comnipat Aaeu. Then

n
E p(t,p(tNn No) (1+t) Q(t).

n
wkee Q(t) E. q(t,N ,Nj_,No).

J=2

NPooj: For the compact spaces A D B D C we conclude from the exactnes

of the sequence (3.10) for every m > o:
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rO(A,B). r(A,C) + rO(B,C).

rI(A,B) + rI(A,C) - r (B,C)

+ (-1) m r m(AB) - (- 1)m rm(AC) + (-1)m rm(B,C)
-(-I)' dmlA,B,C) - o .

From this we deduce:

- (-1)m d(A,B.C) * (.1)m' 1 dm-'(A,B,C)

+ (-I)m r*(A,B) - (-1) rm(A,C) + (-)m r (B.C).

Multiplication of this equation by (-1)' tm and addition over m

yields

q(tA,BC) - t q(t,A,B,C)

+ p(tA,B) - p(t,A,C),+ p(t,B,C),

or equivalently:

p(t,A,B) + p(t,BC) a p(t,A,C) + (1 + t) q(t,A,BC).

Application of this equality to the triples N N. 1 0 , j > 2

gives

p(tNNj 1) + p(t,Nj 1 ,No) - p(t,NJNo) + (1+t) q(t,Nj,Nj.1 ,No).

Adding these equations over j ! 2 and setting Q(t):- r q(tNjNjlNo)
j>2
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one finds

n
1 p(t,N iNj_,) = ptNnNo) + (1+t) Q(t)

as claimed. .

3.4. The Morse Index and the Morse inequalities for an isolated

invariant set.

Proposition 3.3 is in particular applicable to the filtration

N C1 c... c Nn found by Theorem 3.1 for a Morse decomposition of

an isolated invariant set. There is however not a unique filtration for

a given Morse decomposition, in fact there is also' no unique index pair

(N1,N0) for an isolated invariant set. But we shall prove that

H(N1,No) -U H( 1, !0) for any two index pairs (N1.No) for the same

Isolated invariant set S. To do so we first recall the notion of a

pointed space. For any pair (X,A), the pointed space X/A is the pair

(3.12) X/A - ((X \ A) u (A), [A]).

The points of X/A consist therefore of the points x e X \ A and an

additional distinguished point (A]. The topology of X/A is defined as

follows: a set U c X/A is open if either U C X \ A und U is open

in X, or if [A] e U and (U n (X \ A)) u A is open in X. In parti-

cular, if A a *, then [A] is open and closed in X/A. Another way to

define the pair (3.12) is X/A a (X/-., [A]), with - being the equi-

valence relation in X defined by: x -. y if either x -y in case

x,y ! A or if x,y e A. This equivalence relation simply identifies the
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7 . -.

points in A. Clearly if (X,A) is a compact Hausdorff pair, then X/A

is also.

After. these preliminaries we can formulate the crucial fact,

that the homotopy type of N /N2  depends only on S.

Theotem 3. 2.

Let (N1,No) and (1I',X 0) be two index pairh 0t4 the i.ot.ed iJanvoJi-

ant Ae~t S. Then the pointed topoLogicaX 4pace., N1/N0  a IT1/IT o a e

komo.op.cat.y equiva.tent: N , .i we denote by [ ] the

equ'vatence eta6 od poi.nted 6paceA. W e thkexe~o camn a6ocite to S

the uniZque equivatenee CWAa

(3.13) h(S) [N1/No]

AmI'L (t11t40) i anyw index paiL 604 the i~otated inva.'rian~t 4e~t S. We

caU h(S) the (homoatopy)index o S.

Postponing the proof of this theorem to the next section we first

state and prove the Morse theorem. Observe that if (XY) is any pair,

then for the Cech-cohomology (see [7]) H(X,A) = H(X/A). Using then the

fact, that the cohomologies of two homotopically equivalent pairs are

isomorphic we therefore conclude from Theorem 3.2. the

CoAot.ay:

Let (N1,N) and (191,N0 ) be wo index pc.L'r. 6o& the i ota.ed in-

uva&ant aet S. Then H(N1,No)-1 H(lfl,]Ro)
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71 T 7TI

With H(N1,No) we have found, up to isomorphisms, the algeoraic

invariant of the isolated invariant set S we are looking for. It is
independent of the particular index pair for S chosen. We can there-

fore define:

(3.14) p(t,h(S)) = p(t,N 1,N0 ) ,

where (N1 ,No) is any index pair for S. With this notation, we for-

mulate the main result of this section.

Theo em 3.3.

AAwwme S Z an Z oited iet n the toa.oa 6tow X.. Let (Mi,... ,Mn)

be an admi.6te o,%deing oj a Mo oe-decompo.X6ton o6 S. Then

n
E p(t~h(M.)) - p(t,h(S)) + (1+t) Q(t)

jai

wke.'e the 4eJie6 Q(t) iA dedined a, in P'opo.6.tion 3.3. In patrticutaA

the coe6ZcientA o6 Q au nonnegative integeu.

P4oo: By theorem 3.1. there is a filtration No C Ni. C ... C Nn for

the Morse-decomposition, such that (Nn ,N0 ) is an index pair for. S

and (NJ,Nj. 1 ) is an index pair for M., 1 < j < n. In view of (3.14)

the statement is an immediate consequence of Proposition 3.3. *

We point out that the term q(t,N ,Nj. 1,N0 ) in theorem 3.3

gives some measure of the number of algebraic connections from M. to

SM J.I, . In fact we shall prove
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P.wpo4iUon 3.4.

I q(t,N ,Nj_,No) # o, then C U bMt i, 1 b M M. U Mi.

Proof: With the notation as in the proof of the previous theorem we con-

sider the compact sets Nj i NJ. 1 D No, where (NJ,N ) is an index pair

for M9 1 . the pair (Nj.1 ,No) is an index pair for M. and

(NjN..1) is an index pair for M If (NINo) is an index pair for

S we can write H(h(S)) a H(N1 ,No). With this notation we have by

(3.10) the exact sequence: b H(h(MJ)) -* H(h(Mj,1.)) H(h(M..191))

Assuming Mi, 1 a MJ. 1 , 1 u M we shall conclude 6 = o, hence

Q(t,N ,NiNo) - o in contradiction to the assumption. Rewording, we
set S - M i and S1 a M .1,1  and S2 = Mu , and have S - S2 US 1

with S2 n S , . The above exact sequence then reads

(3.15) H(h(S2)) - H(h(Sl u S2)) + H(h(S1))

We need a Lemma. We first recall that the sum v of two pointed

spaces (Aa) and (Bb) is defined to be A u B / {a,b} or, in other

*words, it is the pointed space obtained taking the union and identifying

the two distinguished points a and b. This sum is denoted by (A,a)

v (Bb). It is easily seen to be well defined on homotopy classes, so

that [ (Aa)] v [ (Bb)] can be defined to be [(A,a) v (Bb)].

Le=mi 3.5. (Sum dormuJa 6o4 the index) 16 S1 and S2  A.e isot.,ted in-

vdaiant 4 eta wLth S 1 S2 =09 then S 1 U S L 2 i a Z~soto.ted invizian~t

et dnd h(S1 U $2) -h(S1) v h(S2).
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P.oo J o the Lemm: Choose disjoint index pairs (N1,No) for S, and

(W!j10 ) for S,, i.e. N, fl = , then (N1 U l, No0 if ) is an

index pair for S1 U S2 and it is easy to see that [N1 Ul/N0 U Ro0

-[N/N O] v (W/ff 11o. Thus h(S U2) = h(Sl) v h(S2) as claimed.

By the Lemma, we have H(h(S1 u $)) = H(h(Sl) v h(S2)) which

is isomorphic to H(h(S)) Q H(h(S2)). Therefore the exact sequence

(3.15) must break up into a collection of short exact sequences

o Hr (h(S2)) , H r(h(S1 u $ 2)) H r(h(S1)) - o, and so, in particular,

the maps a are all trivial. This finishes the proof of Proposition

3.4..

It is clear that by breaking up the Morse decomposition in

different ways, Q can be written as sum of terms measering connec-

tions between different Morse sets; of course the sum of these terms

would be the same.

3.5. Proof of theorem 3.2.

Let (X,A) be a pair, then the quotient map X i X/A, x - [x], defined

by Ix) a x if xE X \A and [x] - (A] if x e A, is continuous. It

is surJective expect if A 0 0 in which case it just misses the dis-

tinguished point [A]. The following statement is obvious:

P~topoa6ition 3.5S.

Let f: (X,A) - (YB) be a continou map be. ueen the -to pa.i. (i.e.
f(A) C B). Then the induced map o6 pointed apaceA f: X/A + Y/B de.jited
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by ;(,x f.(x)] is aL comnut.n

41

If (N1,No) is an index pair for the isolated invariant set S,

we define for t > o the following subsets of Ni:

Nt : - (yGN 1 I y.(-to] C N1I

11
(3.16)

N t  = fy e N1 I y0,tl # 4} N

These sets are compact, and positively invariant relative to N1.

Roughly Nt is N1 "pushed forward" in time t and Not is No

Mpulled backward" in time t. One can readily verify that (N1,N0 t) is

also an index pair for S. In general, however, (No( Nt) is not an

index pair for S anymore, although it is, if X is a two sided local

flow.

Now let I: (Ni, N r) No) . (N1,No) be the inclusion map and

denote by I the induced map between the corresponding pointed spaces

as defined in proposition 3.5, then:

Lem a 3.6. Let t > o. Then the induced map

(3.17) 1 : N1 /(N O n N1)- NA

i. a. homotopy equva .ce.

Pfoo&: Let t > o and define the map
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(3.18) F (N/No) x [o,11 - N1/N0

ty setting F([y] ,) = yat] in case y.[o,at] C N1 \ N0  and

F([y],a) = [N0  otherwise. By definition 3.4 of an index pair, this

map is well defined as a map between pointed spaces. We shall prove

that it is continuous. Suppose F([y] ,a) (No] , then, by Def. 3.4 (ii),

y.[o~at] C N \ N0. Let U be any neighborhood of y-ot disjoint

-: from No , and let V be any neighborhood of y-[O,at] disjoint from

N0 . By the continuity of the flow there are neighborhoods W of y

and W' of a such that if (y',a') C W x W' then y'.o't 6 U and

y'.[o,a't] C V. It now follows from definition 3.4 (iii) and V n N0 =

that y'.(o,a't] C N1 \ No, hence F([y'], a') [y'.o't] y'.&'t E U;

hence F is continuous at ([y] ,a). Suppose F([y] ,a) -[N 0 ]. If

y.[o,at] S Ni, then for y' close to y and a' close to a we.have

y'[o,a't] t N1, hence F([y'],a') = [N0], and F is continuous at

([y] ,a). Suppose finally that F([y] ,a) a [N0] and y.[o,at] C N1, then

y.at N0 . Let 1 be a neighborhood of [N0] in N1/N0 . Then there is a

neighborhood U of No  such that [N r U] = " Now if (y',a') is

close to (y,a), then y'.a't r U by the continuity of the flow. If

y''[O,a't] C N1, then F(y',a') = [y'.a't EU. If y'i[o,a't] ; N

then F(y',a') [N 0 eU. In either case, if (y',a') is close to

(y,a), F(y',o') e IT, so F is continuous at ([y],a) and having exhaus-

ted all the possibilities, F is continuous.

If a = 1, the map F(',1): N1/N0  has its range in
tt t(N1 u No)/N 0 = N /(N n N1 ).Let f be the map F(-,l) but considered

as a map from N1/N0  into N1/(N0 ' N1). Then, - meaning homotopic to,

* -68-
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(3.19) 1 o f - F(.,1) -, id on N1/N o0

by definition.of F. On the other hand, since Nt is positively in-

variant relative to N1, the restriction of F to (Nt u No)/N 0 [oI]

t
hasragein (N~t U No)/N o . Let Fr denote this restricted map as a

map into (N1 u N0)/N0 . Then

(3.20) f o I a Fr (e,) %, id on N1/(NO n NJ).

From (3.19) and (3.20) the Lemma follows.

Next define for t > o the map

(3.21) g: N1/N0
t  + N1 / (N0 n N1)

by setting g([y]) I [yet if y-[o,t] C N1 \ No  and g([y])

a [N o n NJ] otherwise. This map is in fact well defined as a map be-

tween pointed spaces. Indeed, if y e N t, then, by definition,

y.[O,t] ; N1 \ No , hence g([y]) u (No n Nlt]• Also, if y'O,t]

C (N o) then y.t E N1  and so g([y]) [ (y .tj 6 N1/(NQ n N1) as

required.

Lem= 3.. Tke nzp g de{ined by (3.21) i.,a a homeomo.ph.m.

P 4O: Assume g([y] ) o N0 n NltJ, then y.(o,t] S N1 \ N0  and there-

fore, by Definition 3.4, y.[o,tj n NO0 0 , hence y 6 N0 t and thus

Sl([ No0n Nj ) N; t]. Moreover, if [y11 and [y 2 are not equal to

4, -69-



[Nt in N /N;t then yl.[O,t] and y2 .[,tI are contained in

N1 \ N0 and y1-t A Y2.t. Therefore [y-t Y (Y2.t in N1/(N ('r NJ)

and g is injective. We claim that g is surjective. Let y G Nt \ N

then there is a y' E N1 with y'.[o,t] C N1 \ N0  and y'.t - y

proving the claim. Proceeding as in Lemma 3.6 one sees that the map g

is continuous, since g is a map between compact Hausdorff spaces it

must therefore be a homeomorphism. •

Let now j : (Ni,No) * (N1,Nt) be the inclusion map. For its

induced map J we shall prove

LwtA 3.8. The map j : N/No -, N1/N0 t iA a komotopg equi.vatence.

:Poo: Consider the sequence of maps

N 1/N 0  N 1/Ao0g NI/ (No nl Nj) /
N/N 0 *N1/N 0 •

By the definitions, g o j - f, where f is defined in Lemma 3.6,

hence (1 o g) o j 1 o f " Id on NI/N o, by (3.19). Also, by (3.20),

(g o j) o I - f o I id on Nt/(N O  N1 ). Therefore, since, by Lemma

3.7, the map g is a homeomorphism, j 0 (i o g) % id on N1/No which

proves the Lemma. .

It was shown in theorem 3.1, that if N is any isolating neigh-

borhood of S - I(N), then there is an index pair (N1,N0 ) for S such

that N C N1 C N, and such that, moreover, N1 and N0  are positively

invariant relative to N. Such an index pair will be called an index pair

contained in N. We observe that for an index pair (N1 ,No) contained in
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N we have I1(N) C N1  and I+(N) f, No z-o, where I1(N) z CyE N

-' . y.R C N} and I+(N) (yE N I y.R N}.

Lemma 3.9. Let (N1,No) oand (F ,No) be to index pa . 'ot S z I(N)

contained in N. Then ,theAe exizt a t > 0 .SuLc.k .tha.t:

(N', N0 n NP C OW 1W

(N~,T rN~)C (N1,N-t

PADO: Since I'(N) C N1, if yE cl(N\ N) then y.R 5t N. By com-

pactnes of cl(N \ N1) there is a t1 >o such that y E cl(N \ N1 )

implies y.[-t,o] 9{'N. Similarly, if y No, then y.R N and there

is a to such that y e N0 implies y'[o,t01 9 N. Let Ti and 'o be

the corresponding numbers for the pair (1i,1o), and put T - max

{t1',"f1 to*-fo}. Suppose y E NT. Then y-[-,r,o] c N, c N and hence

y cl(N \ Nt) and therefore y 6I and NI e T1i . If yE (N0 ( NI)

C R, then y.[o,-r St N and so by definition (3.4) (iii) there is a

t < T, such that y.[O,t] C I and y-t 6 N0, therefore y e Not and
0 0

so y G UT '. Consequently (NIT NO n NI) C (1'. The other in-
50 yE C 0,~ ) h te n

clusion follows the same way. .

Lemma 3.10. Let (N1,N0) and (WiTSo) be two index pai 6o. S con-

toined Zn the 6otatng neJ.gkbothood N o6 S = f(N). Then [N1/N0] =

Phoog: Let t > o be as in Lemma 3.9, and lot 1l and 12  be the
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inclusion maps of the corresponding pairs in Lemma 3.9. Denote by iI

2 and i2  the corresponding induced maps between the pointed spaces. Con-

sider the sequence of maps:

9 t

N/(Nt / t  /( ontI)12

1No 1 ( n (N 0  0 1

where the map g respectively is defined by means of the flow in

(3.21). Observe now that by definition j2 0 J9o 0 a 0 0 o i,

since both mappings map [y] onto [y-t] or onto [Not]. Hence, by the

Lemmata 3.6 - 3.8, 12 o o i1 is a homotopy equivalence. Similarly

a g o 12 is a homotopy equivalence. Now, if one has any sequence
, x

X0  x. x 2 --X3  of maps such that x o € and * o x are homotopy

equivalences, then all the maps *,x and * are homotopy equivalences.

Applying this observation we conclude, that ? 0 5i' 12 and i1 o g are

homotopy equivalences and hence, by Lemma 3.7 also the map i is a

homotopy equivalence. Now the sequence of maps

a a

/t Ng/No Nt/(Non NJ)
'1-0 N1 N 1-

1/'0 1/0%

shows that [N/N o ] u [IN/ o] .

In order to prove theorem 3.2 we have to show that NI/N0  is

equivalent to N1I/N0 for two arbitrary index'pairs (N1,No) and

I, -72-



for S. For this purpose we shall show that they are equi-

valent to two index pairs both contained in a common isolating neigh-

borhood of S. In view of Lemma 3.10 this will then finish off the

proof of theorem 3.2.

Let (N1,No) be an index pair for S. Pick an isolating neigh-

borhood N'. of S whose interior contains cl(N 1 \ N0), and define

the pair (N1,No) 0 (N' n N1, N' " N0) which is an index pair for S

contained in the isolating neighborhood N: - N' n N1  of S. In fact,

from N N0 a N1 \ N0  we conclude that cl(N 1 \ NO ) is an isolating
4"

neighborhood for S. Moreover, N is positively invariant relative to

N1. In fact, if yE N1 \N 0  and if y.[o,t] 9 N1 define t* = sup
10 . U . 0' PU u.
(s I y'[o,s] C N1 \No}. Then y.t* e cl(N 1 \ N0 ) - cl(N 1 \ N0 ) C N'.

But y.t* is not in the interior of cl(N 1 \ NO), therefore y.t* e N0

and so y.t* E N 0, N' a No -

Lem& 3. 11. N 1/No  h. omeomopkic to N1/No.

Pfooj: Clearly N1 \ N0 = N1 \ N0  and N1 c N1,N0 C No . The inclusion
4. 4'u

map I: (N1,No) . (N1,No) therefore induces the required homeomor-

phism 1.

Let now N be any isolating neighborhood of S contained in

N1 \ N0 a N1 \ No. By theorem 3.1 there is an index pair (N1,No) in

N1  such that N1 and N are positively invariant relative to N and

such that cl(N 1 \ N0) C tnt N. As above, the pair (N1 r) N, N0 () N) is

an index pair for S in Fl such that (N(-N / (NoN) is honeomorphic to

N1/No (Lema 3.11). But also (N1,No) is an index pair in N and there-
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fore, by Lemma 3.10, we conclude that NI/N o  is homotopically equi-
0 01 0

valent to (N1 n N)/(N ° n N.

Summarizing we have proved that NI/N 0  has the homotopy type

of an index pair in N, namely of that given by (N1 ) N)/(N0 ( N).

Thus if (N1,No) is any index pair and N C int (N1 \ N0 ) is any

compact neighborhood of S, then N1/N0  has the same homotopy type as

the index pairs of S in N. If (Nj,N0 ) is another index pair of S,

we now simply choose N interior to cl(N 1I \ N o) and with Lemma 3.10

the proof of theorem 3.2 follows.

3.6. Comparison with classical Morse-theory

The present approach is a generalization of Morse's theory which

had as its original aim to find lower bounds for the number of critical

points of a smooth function on a manifold.

Suppose f(x) is a smooth function on a compact closed mani-

fold M of dimension d. Then the equation x = Vf(x) defines a flow

on M. This flow will be taken as the flow on r = M, also the local

flow X will be taken to be all of M as well as the isolated in-

variant set S. Hence r a M = X - S. Suppose now that f has only

finitely many critical points, say {x I P We claim that'the sets

Mr: -{x,} form a Morse decomposition of S = M. In fact, if x C M

and t > 0 then either x-t - x or f(x.t) > f(x). This implies that

f is constant on the limit sets w(x) and w*(x), so both these sets

-. must be rest points and, unless x is a rest point, f(w(x)) > f(w (x)).

Now let (xox9...,xn) be any ordering of the rest points such that if
01

j > i then f(xj) _.f(xi). Then the condition (in Definition 3.1) that
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(xoxi,...,xn) is an admissible ordering of a Morse decomposition is

satisfied.

To arrive at Morse's statements it Is necessary to find the

p(t,h(x1 )) for the Morse sets Mi - {xi). In the case that xi is a non-

degenerate rest point, the gradient equation can be written in a local

corrdinate system y centered at the rest point y - o, and after

stretching the variables y ex, as

x -Ax + g.(x)

+ A+x+ + g+(x)

Here x - (x_,x+) 6 E_ x E+ a E a d, and <x.,A-x.> <.X-lX. 2 and

* (X+sA+x+ > )lx4 2 for some x > o. Moreover g - (9_,g+) satisfies

g(o) -o, g'(o) - o, and in lxl _ 2 we have the estimate IgI <_ .,

Ig'l < with a tending to zero as c tends to zero. Let now Q be

the unitsquare Q - (x e E I Ix.I < 1 and Ix1 i 1). If x G 3Q then

lxI - 1 or Ix+l - 1. If x e Q and Ixi _ x then 2

S2<x.,Ax.+g.(x)> <-xlx.I2 choosing 4 < A. Similarly, if jx+l !_ x.I,
then 2 2. This implies, that if N, a Q and No

(x 6 Q i Ix+l - 1), then (N1,No) is an index pair for the critical

point x, under consideration. We claim that

(3.22) p(t,h(xt)) - t d , di - dim E+.

This is seen as follows: the pair (N1,No) is obviously homotopically

equivalent to the pair (Dm,aDm), m - di, where D" - ((x+,O) I Ix I . 1)

is the closed unit disc in E+, and {D' - ((x+,o) I 1x+1 - 1} the unit

sphere. Therefore N1/N0  is homotopically equivalent to Dm/aDm which is

the same as the sphere of dimension m- d with a distinguished point.
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Therefore the cohomology has rank o in all dimersions ex-

cept the dimension di, where it has rank one. Thus (3.22) is verified.
d

Also, (M,O) is an index pair for S = M and p(t,h(S)) = r

*t where a. is the j'th Betti number of the manifold M. The
n

statement E p(t,h(xi)) = p(t,h(S)) + (1+t) Q(t) then includes the
lao

Morse inequalities for gradient flows on compact closed manifolds. If

all the critical points are nondegenerate we have:

n di  d
a t jZo a, t + (1+t) Q(t),

where Q(t) a qo + tqj +... is a polynomial with integer nonnegative

coefficients qj >_o. In particular we read off that vj !.8j, where

Vi is the number of critical points xi) having di = j as dimen-

sions of its unstable invariant manifold..

In S. Smale's generalization of the above Morse theorem [81,

some of the critical points are replaced by the periodic solutions of a

flow, which together serve as Morse sets. He assumes that these periodic

solutions and critical points are finite in number and comprise the non

wandering set. That they form a Morse decomposition comes from his im-

posed "no cycle" condition. It can easily be shown that for a nonde-

generate periodic orbit M (i.e. no Floquet-multiplier equal to 1)

having an orientable unstable manifold, p(th(Mj)) = td + td+1, where d

is the dimension of the unstable manifold of the Poincarb map. Also,

when the unstable manifold is non-orientable, it is the same, if Z2

coefficients are used, and is o otherwise. In fact, let us consider

the orientable case. It is well known, that locally in a neighborhood
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of a nondegenerate periodic solution, the flow is topologically equi-

valent to a linear flow: x -x_, x+ a x+, a - 1. Here e(mod 27r)ES'

and S a (o,o,e) I 0 e S } corresponds to the periodic solution. Now

with 8 and aB¢ as above for the critical point it is obvious that

if I:- Be x S and R0: -B n n {Ix+l •} X S1  then (1,N) is

an index pair for the periodic orbit. If dim x+ = d= > 2 then the

cohomology of B x Sl has rank 1 in dimensions o and 1 and o

otherwise, while that for aB n cIx } has rank 1 in dimensions

o,l,d -1 and dI . Then the exact sequence for the pair (N1,Io) im-

plies that the cohomology of (l1 ,lNK) has rank 1 in dimensions d'

o

and d1 . If di1 .2 the proof follows similar lines.

Rema~k4: We end this section with an informal description of

sowe further properties of the index and with some remarks about their

possible use in applications. For the precise statements and their

proofs we refer, however, to 1 4 J and to H.L. Kurland [231.

a) We have seen that the polynomial equality in Theorem 3.3

comes immediately from the filtration N0 c ... c Nn and apriori does

not depend on what Morse set is inside N 3 \ N3i1 . That is, the homo-

topy type of N3 / N3. doesn't allow much to be concluded about M

itself unless it is known to be a nondegenerate critical point or

periodic orbit or say, some Invariant manifold with a hyperbolic normal

flow. We should mention however that there is a general relation be-

tween the cohomology of the index of S, that of S and that of the

unstable set from S. Namely, let N be an isolating neighborhood of

S and let I'(N) a (y ez N I y.R" c N). On 1'(N) \ S define the equi-

valence relation: y ' y' if there is an orbit segment contained in N
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and connecting y and y'. Let a- be the unstable set from S de-

fined as the quotient space, a- = ((N) \ S)I,. Then one can conclude

by the continuity property of Cech cohomology that there is an exact

sequence

*H(a') * H(h(S)) - H(S)

* Thus the index has in it that part of the cohomology of S and of a

that do not cancel each other. For a proof we refer to R. Churchill

[101, see also [51. For example, in the case where S an orientable

periodic orbit other then an attractor, the first cohomology of S

always cancels a corresponding class in a-, and so does not show up

in the index. (This is not generally true for isol-ated invariant sets

that are circles).

b) The present approach to Morse theory shows that the part of

Morse's work concerning existence of critical points makes no actual

use of special properties of the spaces, for example they need not be

manifolds, nor is it necessiry to approximate infinite dimensional

spaces by fin 4 te dimensional ones. The required compactness can be

there even in infinite dimensions. Here it is particularly useful to

have the flexibility provided by the concept of (one-sided) local flow

X. One of the main points of the present approach is that the sets which

have an index need not be critical points, in fact an index is defined

for any isolated invariant set. The value of this becomes particularly

apparent when families of flows are treaded. In such problems it is seen

that there is a natural way to each isolated invariant set of a given

flow a corresponding isolated invariant set for each nearby flow. It can
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be shown that these "continued" sets have the same index as those from

which they arise under perturbation. This is like the "homotopy axiom"

of degree theory. Now even if one starts with a critical point, it may

continue to an invariant set which is not comprised just of critical

points. For example, consider the family x - x3 . When u < o, the

set {x=o} is an attracting point. However, it continues for p > o,

to the full set of bounded solutions S = {x I -p < x. . + ul. This set

contains the three critical points together with the two "connecting"

solutions. Therefore, to use Morse's theory to study critical points

of parametrized families of gradient flows (for example to do "bifur-

cation theory") it is already necessary to have an index for sets other

than sets of critical points. One other point should be made about the

above sketched continuation theorem. In contrast to the situation in

degree theory, the homotopy index has some "internal" structure, name-

ly, that of a pointed space. The continuation theorem says that the

isomorphism between the indices of two sets related by continuation

is determined by the homotopy class of the arc along which the conti-

nuation takes place; and it may be different for arcs in different homo-

topy classes. This added structure can also be useful in studying fami-

lies of flows.

c) As with degree theory, there are also "sum" and "product"

formulas for the index theory. If S1 and S2 are disjoint isolated

invariant sets of a local flow then S- S U S is isolated and its

index is the "sum" of those of SI and S2 (i.e. the pointed space ob-

tained by identifying the distinguished point of h(S1 ),. with that of

h(S2)). For example, one sometimes wants to prove the existence of a

solution connecting two critical points. This can be done if the points
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Appendix: An example of a local flow.

In order to illustrate the purpose of the concept of a local

flow introduced in section 3.1 we consider the solutions of a special

partial differential equation. More precisely we consider the following

simple example of an initial boundary value problem for a weakly coupled

semilinear parabolic system, which is not necessarily of variational

structure. It is a special case of a general problem studied by H. Amann

[201.

u A(x,D)u . f(x,u) in x.(o,-)

(A.1) B(x,D)u - o on an x (o,-)

u(o,.) - uo  in W

Here 0 C Rn  is a bounded domain Whose boundary, an, is an

(n-1)-dimensional C2 inanifold for some u 6 (o,1). The differential

operator A(x,D)u a (a(x,D)ul,...,a(x,D)uN), u Z (ul...,uN): a x [o,-)AR

is a diagonal uniformly elliptic and positive second order differential

operator with coefficients in Cu(-). The boundary operator B(x,D) is a

diagonal Dirichlet or Neumann boundary operator. Let D C RN  be an

arbitrary closed bounded convex set containing o e RN . For the non-

linearity we impose the following smoothnes conditions: f : I x D - RN

is continuous, f(.,g): " * RN  is CU-Hilder continuous uniformly with
• . RN

respect to c E D and f(x,.): D . RN is locally Lipschitz-continuous

uniformly with respect to x 6 '. In addition, we impose on the boundary,

3D, of the set D the following tangency condition for the vectorfields

f(x,-): let &o 6 aD, then we denote by N(&o) the set of outer normals

to aD at co, and we require that
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make up a Morse decomposition of an isolated invariant set S whose

index is not the sum of those of the critical points (sde [91 for

example). This brings out again the significance of Q in Theorem

3.3. Namely, the non-zero coefficients in Q(tNj, Nj.,N o ) correspond to

connections from to, The product theorem applies when the

flow breaks up into two flows e.q. x = f(x), y - g(y). If S1  is an

isolated invariant set for the first flow and S2 for the second, then

S n S x S2  is an isolated invariant set for the full equations, and

h(S) is the "smash product" of h(S1 ) and h(S2). This theorem finds

applications when a given set (not a product) can be continued to one

which is a product.
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(A.2) < p, f(x,) > 10

for every x e n, every 6 3D and every p r N(r). It is well known

[20, Theorem 11, that in view of the restriction (A.2) the system (A.1)

has a unique regular solution u for every given uo 6 C2(g, RN) which

satisfies Buo - o and uo(.) C D, moreover u 6 C 2+U1(? x (o,-), RN).

By a regular solution of (A.1) we mean a function u E c2 1 (-.x (o,-),RN)

n C1'(Iffx [o,-), RN) such that u(x,t) e D and Lu(x,t) - f(x,u(x,t))

3Tfor (x,t) 6 T x (o,-s) (where L =a- + A(x,D)), and Bu(x,t) = o for

(x,t) 4 an x (o,-) and u(o,x) - uo(x) for x r .

For our purpose it is more conventient to-formulate problem (A.1)

as an abstract semilinear evolution equation in the Banach space

B Lp(sa,RN) for p > 2n, whose norm we denote by I j. Let

W : a (ue W2 (,RN) I B(x,D)u = o}, then the operator A = A(x,D) with

domain D(A) : - W generates an analytic semigroup in Lp (,RN ). Defining

1 for o < a < 1 the scale of Banachspaces B.: = D(Aa) with norms lul :=IAaui,

and setting B0 a B, one knows that for o <a < <_1, the space BS  is

continuously and densely embedded in B . Moreover, since the resolvent of the

operator A is compact, this embedding is compact if a< S, For more

details and references we refer to (20]. Now set M: - {u 6 B I u(x) G D

a.e. in n1 and put F(u) (x) : = f(x,u(x)). Then (A.1) is equivalent to

the evol tion equation

(A.3) u+ Au - F(u), u(o) • uO = M n B

for some s > o (20, Lenma 7.21 , and if u is a solution, then
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u(t) M M n Bs  for all t > o. Moreover u solves the integral equation

(A.4) u(t) •eAt uo + eA(t s) F(u(s)) ds

0

Since u(t) M Mn B8  for all t > o we conclude from (A.4), in view of

the well known properties of linear analytic semigroups, the following

estimates for all t,r > o:

Iu(t)IM 'c(a,) (1 + luol s)
(A.5)

-Iu(t) - U( ) _ cc(C,090 (1 + luol) It- l,

where o < a < o and o <'v < o-*. Conversely, it is easily seen that a

solution u(t) of the integral equation satisfying the estimates (A.5) for

some o < u < B is a solution of the evolution equation (A.3).

After these preliminaries we introduce a flow and a subflow

prorted by the estimates (A.5). Namely we let r be the Banach-space of

continuous curves y : R . B. with the sup-norm for some a > o. On r

a trivial continuous flow is in a natural way introduced by setting for

every T c R

y * T(t): - y(T+t), all t 6 R.

We now define a subset X c r as follows. Let o < ' B < 1,

a. < V < o-m and C1  o be given constants and set

X (y E r I y(t) e Be, y(o) 6 Mer B8, Iy(t)18 < C1  and ly(t) - y(T)I_

C It-TI" for all t,T e R, moreover, for t > o the curve y is a so-

* lution of the equation (A.3) with initial condition y(o)). We claim
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Lemm. 1.. X C r " coniptc,-.'

Proof. Since B C B is compactly embedded, we conclude by the

Arzela-Ascoli theorem that the closure of X in F, X, is a compact

subset of r. It remains to show that X = X. We first observe that the

closed ball K 8  u [_. 1) in B is closed in B. Indeed,

let xn e K with xn *x in B , then I. Xn B -. .AxnI 1. By the

reflexivity of B we conclude for a subsequence Aex 1 y weakly infln

B and IYI !. 1. Since A-$ e tZ(B) is compact we conclude xn * A0 y

in B and hence x - A-8 y. Therefore x e B8  and IxIB * IAexI lyl !_

as claimed. Pick y = X, then there is a sequence Yn e X with yn "-* Y

in r and by the above observation we conclude that for every t C R,

lY(t)1 < C1  and moreover [y(t) - Y(T)I <.C2 t- TI for t,T 6 R. in

addition y(o) e M, as 14 is closed in B. It remains to show that for

t > o the curve y is a solution of (A.3), but this now follows since

y satisfies the integral equation (A.4). The Lemma is proved. 9

From the local existence and uniqueness of the equation (A.3)

we conclude that (Xe, U) • (o,c) C X for every U c r open and every

c > o. Since, by Lemma A.1, the subset X c r is locally compact we con-

clude that X is a local flow of r. In this sense the index-theory des-

dribed in section 3 is applicable to the semiflow generated by the partial

differential equation (A.1). Similar to the example described above a

delay equation can give rise to a subflow of a trivial flow. Here the

past history, properly restricted, determines curves which satisfy the

relevant equation for positive times. For details and also for more

examples of local flows we refer to (4, Chapter IV.61
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u(t) e M r B for all t > o. Moreover u solves the integral equation

(A.4) u(t) eAt u0 + I eA(t' ) F(u(s)) ds
0

Since u(t) e M n BB for all t > o we conclude from (A.4), in view of

the well known properties of linear analytic semigroups, the following

estimates for all t,-r > o:

Iu(t)[0 !_c(B) (1 + 1Uo0 S)
(A.5)

Iu(t) - u(T)IM c(QoV) (1 + iuolB) It-CI

where o < a < B and o <'v < a-*. Conversely, it is easily seen that a

solution u(t) of the integral equation satisfying the estimates (A.5) for

*! some o < ' < is a solution of the evoluticn equation (A.3).

After these preliminaries we introduce a flow and a subflow

promted by the estimates (A.5). Namely we let r be the Banach-space of

continuous curves y : R o B with the sup-norm for some > o. On r

a trivial continuous flow is in a natural way introduced by setting for

every r • R

y • T(t): a y(T+t), all t • R.

We now define a subset X C r as follows. Let o < < 1,

o < v < o-a and C1 > o be given constants and set

X a (y e r I y(t) E BS y(o) • M r 8B, [y(t)[< cl and Iy(t) - y(T)I

C2 It-Tiv  for all tT • R, moreover, for t > o the curve y is a so-

lutlon of the equation (A.3) with initial condition y(o)}. We claim
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Levm A.1. X C r -4 copaac.

Proof. Since Ba C B is compactly embedded, we conclude by the

Arzela-Ascoli theorem that the closure of X in r, X, is a compact

subset of r. It remains to show that X = X. We first observe that the

closed ball K a {u B 1 1.u 1} in B, is closed in B. Indeed,

let xn 6 K with xn *x in B, then IXns = .A'xnl 1. By the

reflexivity of B we conclude for a subsequence Asx n * y weakly in

B and ly !< 1. Since A-$ E t(B) is compact we conclude xn  A-0y

in B and hence x A Ay. Therefore x 6 Ba and 1x18  IA x " lyl <1

as claimed. Pick y 7 , then there is a sequence yn 6 X with yn "* Y

in r and by the above observation we conclude that for every t-6 R,

Iy(t)I !.C1  and moreover [y(t) - y(T)ja <C2It-TI V for t,T e R, in

addition y(o) e M, as 141 is closed in B. It remains to show that for

t 1- the curve y is a solution of (A.3), but this now follows since

Y Satisfies the integral equation (A.4). The Lemma is proved.

From the local existence and uniqueness of the equation (A.3)

we conclude that (Xe, U) s (o,c) C X for every U c r open and every

a : o. Since, by Lemma A.1, the subset X c r is locally compact we con-

clude that X is a local flow of r. In this sense the index-theory des-

dribed in section 3 is applicable to the semiflow generated by the partial

differential equation (A.1). Similar to the exampte described above a

delay equation can give rise to a subflow of a trivial flow. Here the

past history, properly restricted, determines curves which satisfy the

relevant equation for positive times. For details and also for more

examples of local flows we refer to (4, Chapter IV.6.
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In view of possible applications to partial differential

equations we point out that by relaxing the required compactnes

assumptions, K.P. Rybakowski (211 , (22], recently extended the concept

of the homotopy index to one-sided semiflows which are not necessarily

defined on locally compact metric spaces. His definition applies more

directly to semilinear parabolic equations.
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